【题目】已知椭圆
的离心率为
,且以椭圆
的两焦点和短轴的一个端点为顶点的三角形的周长恰为
.
(1)求椭圆
的标准方程;
(2)动直线
与抛椭圆
相交于
,
两点,问:在
轴上是否存在定点
(其中
,使得向量
与向量
共线(其中
为坐标原点)?若存在,求出点
的坐标;若不存在,请说明理由.
【答案】(1)
;(2)存在,
.
【解析】
(1)根据椭圆
的焦点三角形的周长为
,再由离心率得出
关系,求出
值,即可求出结论;
(2)根据
与
角平分线共线,又与
共线,得到
轴为
的角平分线,转化为
的倾斜角互补,斜率和为零,联立直线和椭圆方程,运用根与系数,将
斜率和转化为
关系,即可求解.
(1)椭圆
的离心率为
,
即有
,
椭圆
的两焦点和短轴的一个端点为顶点的三角形的周长恰为
,
可得
,解得
,
,
则椭圆的方程为
;
(2)在
轴上假设存在定点
(其中
,
使得
与向量
共线,
由
,
均为单位向量,且它们的和向量与
共线,
可得
轴平分
,
设
,
,
,
,
联立
和
,
得
,
△
恒成立.
,
①
设直线
、
的斜率分别为
,
,
则由
得,
![]()
,
,②
联立①②,得
,
故存在
满足题意,
综上,在
轴上存在一点
,使得
轴平分
,
即
与向量
共线.
科目:高中数学 来源: 题型:
【题目】甲居住在城镇的
处,准备开车到单位
处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图(例如:
算作两个路段:路段
发生堵车事件的概率为
,路段
发生堵车事件的概率为
).
![]()
(1)请你为甲选择一条由
到
的最短路线
(即此人只选择从西向东和从南向北的路线),
使得途中发生堵车事件的概率最小;
(2)设甲在路线
中遇到的堵车次数为随机变量
,求
的数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线
:
=0(a>0),曲线
的参数方程为
(
为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系;
(1)求曲线
,
的极坐标方程;
(2)已知极坐标方程为
=
的直线与曲线
,
分别相交于P,Q两点(均异于原点O),若|PQ|=
﹣1,求实数a的值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点O,焦点在x轴上,离心率为
的椭圆过点
.
(1)求椭圆的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,若
的面积为
,求直线l与y轴交点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了解学生的体育锻炼时间,采用简单随机抽样方法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下:
分组 |
|
|
|
|
|
|
男生人数 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人数 | 3 | 20 | 10 | 2 | 1 | 1 |
若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.
(1)将频率视为概率,估计该校4000名学生中“锻炼达人”有多少?
(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.
①求男生和女生各抽取了多少人?
②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男女各1人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,EB垂直于菱形ABCD所在平面,且EB=BC=2,∠BAD=60°,点G、H分别为线段CD、DA的中点,M为BE上的动点.
![]()
(Ⅰ)求证:GH⊥DM;
(Ⅱ)当三棱锥D﹣MGH的体积最大时,求三角形MGH的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:
土地使用面积 | 1 | 2 | 3 | 4 | 5 |
管理时间 | 8 | 10 | 13 | 25 | 24 |
并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:
愿意参与管理 | 不愿意参与管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相关系数
的大小,并判断管理时间
与土地使用面积
是否线性相关?
(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?
(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为
,求
的分布列及数学期望。
参考公式:
![]()
![]()
其中
。临界值表:
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考数据:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,把函数
的图象向右平移
个单位,再把图象上所有的点的横坐标缩小到原来的一半(纵坐标不变),得到函数
的图象,则下列结论正确的是( )
A.
的最小正周期为
B.
的图象关于直线
对称
C.
的一个零点为
D.
在
上单调递减
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com