精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=log2x,g(x)=x2+2x,数列{an}的前n项和记为Sn,bn为数列{bn}的通项,n∈N*.点(bn,n)和(n,Sn)分别在函数f(x)和g(x)的图象上.
(1)求数列{an}和{bn}的通项公式;
(2)令Cn=$\frac{1}{{{a_n}•f({b_{2n-1}})}}$,求数列{Cn}的前n项和Tn

分析 (1)由题意可得:n=log2bn,解得bn=2n.Sn=n2+2n,当n≥2时,an=Sn-Sn-1,即可得出an
(2)f(b2n-1)=$lo{g}_{2}{2}^{2n-1}$=2n-1.可得Cn=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂项求和”即可得出.

解答 解:(1)由题意可得:n=log2bn,解得bn=2n
Sn=n2+2n,当n≥2时,Sn-1=(n-1)2+2(n-1),
∴an=Sn-Sn-1=2n+1.
当n=1时也成立,
∴an=2n+1.
(2)f(b2n-1)=$lo{g}_{2}{2}^{2n-1}$=2n-1.
Cn=$\frac{1}{{{a_n}•f({b_{2n-1}})}}$=$\frac{1}{(2n+1)(2n-1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴数列{Cn}的前n项和Tn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.

点评 本题考查了指数与对数的运算性质、数列的递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ax2-2x+2,若f(x)在区间(1,4)上有f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线$\left\{\begin{array}{l}{x=2t}\\{y=2-t}\end{array}\right.$(t为参数)与x轴,y轴交于A、B两点,点C在曲线ρ=-2cosθ-4sinθ上移动,求△ABC面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若命题p是假命题,命题q是真命题,则(  )
A.p∧q是真命题B.p∨q是假命题C.?p是假命题D.¬q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在平行六面体ABCD-A′B′C′D′中,若$\overrightarrow{AB}=\vec a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow{AA'}=\overrightarrow c$,则$\overrightarrow{BM}$=(  )
A.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$B.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$C.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$D.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题:“若曲线$\frac{x^2}{m}+\frac{y^2}{n}=1$为椭圆,则mn>0”则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系中,曲线C的参数方程为,$\left\{\begin{array}{l}{x=\sqrt{5}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(ϕ为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为$(\sqrt{3},\frac{π}{2})$.
(Ⅰ)求点P的直角坐标,并求曲线C的普通方程;
(Ⅱ)设直线l与曲线C的两个交点为A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[-3,-2]时,f(x)=x2+4x+3,则y=f[f(x)]+1在区间[-3,3]上的零点个数为(  )
A.1个B.2个C.4个D.6个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是某市举办青少年运动会上,7位裁判为某武术队员打出的分数的茎叶图,左边数字表示十位数字,右边数字表示个位数字,这些数据的中位数是(  ),去掉一个最低分和最高分所剩数据的平均数是(  )
A.86.5,86.7B.88,86.7C.88,86.8D.86,5,86.8

查看答案和解析>>

同步练习册答案