精英家教网 > 高中数学 > 题目详情
13.在直角坐标系中,曲线C的参数方程为,$\left\{\begin{array}{l}{x=\sqrt{5}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(ϕ为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为$(\sqrt{3},\frac{π}{2})$.
(Ⅰ)求点P的直角坐标,并求曲线C的普通方程;
(Ⅱ)设直线l与曲线C的两个交点为A,B,求|PA|+|PB|的值.

分析 (I)消参数即可得到普通方程,根据极坐标的几何意义即可得出P的直角坐标;
(II)将l的参数方程代入曲线C的普通方程得出A,B对应的参数,利用参数得几何意义得出|PA|+|PB|.

解答 解:(Ⅰ)$x=\sqrt{3}cos\frac{π}{2}=0$,y=$\sqrt{3}$sin$\frac{π}{2}$=$\sqrt{3}$,∴P的直角坐标为$P(0,\sqrt{3})$;
由$\left\{\begin{array}{l}{x=\sqrt{5}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$得cosφ=$\frac{x}{\sqrt{5}}$,sinφ=$\frac{y}{\sqrt{15}}$.∴曲线C的普通方程为$\frac{x^2}{5}+\frac{y^2}{15}=1$.
(Ⅱ)将$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$代入$\frac{x^2}{5}+\frac{y^2}{15}=1$ 得t2+2t-8=0,
设A,B对应的参数分别为t1,t2,则t1+t2=-2,t1t2=-8,
∵P点在直线l上,
∴|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=6.

点评 本题考查了参数方程与普通方程的互化,参数得几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知f(x)=$\frac{{x}^{3}-3x+a}{x}$,f(x)>0在x∈[$\frac{1}{2}$,2]时恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知两条不同的直线a,b,三个不同的平面α,β,γ,下列说法正确的是(  )
A.若a∥α,b⊥a,则b∥αB.若a∥α,a∥β,则α∥βC.若α⊥β,a⊥α,则a∥βD.若α⊥γ,β∥γ,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=log2x,g(x)=x2+2x,数列{an}的前n项和记为Sn,bn为数列{bn}的通项,n∈N*.点(bn,n)和(n,Sn)分别在函数f(x)和g(x)的图象上.
(1)求数列{an}和{bn}的通项公式;
(2)令Cn=$\frac{1}{{{a_n}•f({b_{2n-1}})}}$,求数列{Cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.甲、乙两名学生五次数学测验成绩(百分制)如图所示.
①甲同学成绩的中位数大于乙同学成绩的中位数;
②甲同学的平均分与乙同学的平均分相等;
③甲同学成绩的方差大于乙同学成绩的方差.
以上说法正确的是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow{a}$=(1,-3,1),$\overrightarrow{b}$=(-1,1,-3),则|$\overrightarrow{a}$-$\overrightarrow{b}$|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={-1,0,1,2},B={x|x<2},则A∩B=(  )
A.{-1,0,1}B.{-1,0,2}C.{-1,0}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x),g(x)分别是定义在R上的奇函数和偶函数,且满足f(x)+g(x)=ex,则下列结论正确的是(  )
A.f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$且0<f(1)<g(2)B.f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$且0<f(1)<g(2)
C.f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$且g(2)<f(1)<0D.f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$且g(2)<f(1)<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在长为4cm的线段AB上任取一点C,现作一矩形,邻边长等于线段AC,CB的长,则矩形面积小于3cm2的概率为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案