精英家教网 > 高中数学 > 题目详情
2.若函数f(x),g(x)分别是定义在R上的奇函数和偶函数,且满足f(x)+g(x)=ex,则下列结论正确的是(  )
A.f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$且0<f(1)<g(2)B.f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$且0<f(1)<g(2)
C.f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$且g(2)<f(1)<0D.f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$且g(2)<f(1)<0

分析 函数f(x),g(x)分别是定义在R上的奇函数和偶函数,且满足f(x)+g(x)=ex,可得f(-x)+g(-x)=e-x,即-f(x)+g(x)=e-x,与f(x)+g(x)=ex联立,解出即可得出.

解答 解:∵函数f(x),g(x)分别是定义在R上的奇函数和偶函数,且满足f(x)+g(x)=ex
∴f(-x)+g(-x)=e-x,即-f(x)+g(x)=e-x,与f(x)+g(x)=ex联立,
可得g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$.
而f(1)=$\frac{e-{e}^{-1}}{2}$,g(2)=$\frac{{e}^{2}+{e}^{-2}}{2}$,
∴0<f(1)<g(2).
故选:B.

点评 本题考查了函数的奇偶性、单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知曲线$\left\{\begin{array}{l}{x=2t}\\{y=2-t}\end{array}\right.$(t为参数)与x轴,y轴交于A、B两点,点C在曲线ρ=-2cosθ-4sinθ上移动,求△ABC面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系中,曲线C的参数方程为,$\left\{\begin{array}{l}{x=\sqrt{5}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(ϕ为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为$(\sqrt{3},\frac{π}{2})$.
(Ⅰ)求点P的直角坐标,并求曲线C的普通方程;
(Ⅱ)设直线l与曲线C的两个交点为A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[-3,-2]时,f(x)=x2+4x+3,则y=f[f(x)]+1在区间[-3,3]上的零点个数为(  )
A.1个B.2个C.4个D.6个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.正弦函数f(x)=sinx图象的一条对称轴是(  )
A.x=0B.$x=\frac{π}{4}$C.$x=\frac{π}{2}$D.x=π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.随州市汽车配件厂,是生产某配件的专业厂家,每年投入生产的固定成本为40万元,每生产1万件该配件还需要再投入16万元,该厂信誉好,产品质量过硬,该产品投放市场后供应不求,若该厂每年生产该配件x万件,每万件的销售收入为R(x)万元,且R(x)=$\left\{\begin{array}{l}{400-6x,0<x≤40}\\{\frac{7400}{x}-\frac{40000}{{x}^{2}},x>40}\end{array}\right.$.
(1)写出年利润关于年产量x(万件)的函数解析式;
(2)当年产量为多少万件时,该厂获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则点(a,b)于圆心C之间的最小距离是(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.3$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是某市举办青少年运动会上,7位裁判为某武术队员打出的分数的茎叶图,左边数字表示十位数字,右边数字表示个位数字,这些数据的中位数是(  ),去掉一个最低分和最高分所剩数据的平均数是(  )
A.86.5,86.7B.88,86.7C.88,86.8D.86,5,86.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“若x>2,则x2+x>6”的逆否命题是(  )
A.若x>2,则x2+x≤6B.若x2+x≤6,则x≤2C.若x2+x<6,则x<2D.若x≤2,则x2+x≤6

查看答案和解析>>

同步练习册答案