精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线E:y2=4x与圆M:(x3)2+y2=r2(r>0)相交于A,B,C,D四个点.

(1)r的取值范围;

(2)设四边形ABCD的面积为S,S最大时,求直线AD与直线BC的交点P的坐标.

【答案】(1) r(2,3). (2) (,0).

【解析】

(1)联立抛物线与圆的方程,利用判别式与韦达定理列不等式组,从而可得结果;(2)根据S=(+)·(x2x1)=(4+4)(x2x1),利用韦达定理将S表示为关于r的函数,换元后利用导数可求当S最大时直线AD与直线BC的交点P的坐标.

(1)联立抛物线与圆的方程

消去y,x22x+9r2=0.

由题意可知x22x+9r2=0(0,+∞)上有两个不等的实数根,

所以解得2<r<3,r(2,3).

(2)根据(1)可设方程x22x+9r2=0的两个根分别为x1,x2(0<x1<x2),

A(x1,2),B(x1, 2),C(x2, 2),D(x2,2),x1+x2=2,x1x2=9r2,

所以S=(+)·(x2x1)=(4+4)(x2x1)

=2·=2·.

t=(0,1),f(t)=S2=4(2+2t)(44t2)= 32(t3+t2t1),

f'(t)= 32(3t2+2t1)= 32(t+1)(3t1),可得f(t)(0,)上单调递增,(,1)上单调递减,即当t=,四边形ABCD的面积取得最大值.

根据抛物线与圆的对称性,可设P点坐标为(m,0),P,A,D三点共线,可得=,整理得m==t=,

所以点P的坐标为(,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

交付金额(元)

支付方式

0,1000]

1000,2000]

大于2000

仅使用A

18

9

3

仅使用B

10

14

1

(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月AB两种支付方式都使用的概率;

(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=xsinx的图象是下列两个图象中的一个,如图,请你选择后再根据图象作出下面的判断:若x1x2∈(),且fx1)<fx2),则(  

A.x1x2B.x1+x20C.x1x2D.x12x22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是圆的直径,在圆上且分别在的两侧,其中.现将其沿折起使得二面角为直二面角,则下列说法不正确的是(

A.在同一个球面上

B.时,三棱锥的体积为

C.是异面直线且不垂直

D.存在一个位置,使得平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点DD在平面PAB内的正投影为点E,连结PE并延长交AB于点G.

)证明:GAB的中点;

)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,大衍数列024812….来源于《乾坤谱》中对《易传》大衍之数五十的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前项和的程序框图.执行该程序框图,输入,则输出的

A.100B.140C.190D.250

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,为坐标原点,直线的斜率与直线的斜率乘积为.

(1)求椭圆的方程;

(2)不经过点的直线)与椭圆交于两点,关于原点的对称点为(与点不重合),直线轴分别交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性.

(2)试问是否存在,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案