| A. | -$\frac{1}{4}$ | B. | -$\frac{3}{4}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{3}{2}$ |
分析 由题意画出图形,结合|$\overrightarrow{BC}$|=1,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,可得$\overrightarrow{BA}cos∠ABC=2$,设$|\overrightarrow{PB}|=t$,展开($\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$)•$\overrightarrow{PB}$,化为含有t的函数式,再利用配方法求得最值.
解答
解:如图,
($\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$)•$\overrightarrow{PB}$=$\overrightarrow{PA}•\overrightarrow{PB}+{\overrightarrow{PB}}^{2}+\overrightarrow{PC}•\overrightarrow{PB}$.
∵|$\overrightarrow{BC}$|=1,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,
∴$\overrightarrow{BA}cos∠ABC=2$,设$|\overrightarrow{PB}|=t$,
则$|\overrightarrow{PC}|=1-t$,
∴($\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$)•$\overrightarrow{PB}$=-2t+t2+t2-t(1-t)=3t2-3t
=$3(t-\frac{1}{2})^{2}-\frac{3}{4}$.
∴当t=$\frac{1}{2}$时,($\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$)•$\overrightarrow{PB}$有最小值$-\frac{3}{4}$.
故选:B.
点评 本题考查平面向量的数量积运算,考查数学转化思想方法,训练了利用配方法求最值,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{10}}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 课程 | 数学1 | 数学2 | 数学3 | 数学4 | 数学5 | 合计 |
| 频数 | 20 | 10 | 12 | a | b | 50 |
| 频率 | 0.4 | 0.2 | p | 0.12 | q | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,0] | B. | (-1,0) | C. | (-2,+∞) | D. | (-2,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com