精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=ax2+x2(a∈R)在x=-2处取得极值,则a的值为$\frac{1}{3}$.

分析 求出导数f;′(x),-2是方程f′(x)=0的根,求出a,检验即可.

解答 解:f′(x)=3ax2+2x,由连续可导函数的极值点的定义可知,
-2是方程f′(x)=0的根,a=$\frac{1}{3}$,经检验符合条件.
故答案为:$\frac{1}{3}$.

点评 本题考查了函数的极值的本质含义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知a为实数,函数f(x)=alnx+x2-4x.
(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;
(2)设g(x)=(a-2)x,若?x0∈[$\frac{1}{e}$,e],使得f(x0)≤g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:填空题

函数的定义域为,值域为,则的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.三棱柱ABC-A1B1C1的底面是直角三角形,侧棱垂直于底面,面积最大的侧面是正方形,且正方形的中心是该三棱柱的外接球的球心,若外接球的表面积为8π,则三棱柱ABC-A1B1C1的体积的最大值为(  )
A.2B.3C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个空间几何体的三视图如图所示,则这个几何体的表面积为(  )
A.$\frac{{9\sqrt{3}}}{4}$B.$9\sqrt{3}$C.$\frac{{9\sqrt{2}}}{4}$D.$9\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-kx+1(k为常数),函数g(x)=xex-ln($\frac{4}{a}$x+1),(a为常数,且a>0).
(Ⅰ)若函数f(x)有且只有1个零点,求k的取值的集合;
(Ⅱ)当(Ⅰ)中的k取最大值时,求证:ag(x)-2f(x)>2(lna-ln2).

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:填空题

在映射中,如果,那么称的像.设使,则中所有元素的像构成的集合是______.(用列举法表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l的参数方程为:$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),曲线C的极坐标方程为:ρ=4cosθ.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.用篱笆围成一个面积为100m2的矩形菜园,则最少需要篱笆的长度为40m.

查看答案和解析>>

同步练习册答案