精英家教网 > 高中数学 > 题目详情
已知数列{an}的各项均为正整数,Sn为其前n项的和,对任意n∈N*,有an+1=
3an+5,an为奇数
an
2k
an为偶数,其中k为使an+1为奇数的正整数
,则当a1=1时,S1+S2+S3+S4=
 
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件利用递推导出得a2=3+5=8,a3=
8
23
=1,a4=3+5=8,由此能求出S1+S2+S3+S4
解答: 解:∵an+1=
3an+5,an为奇数
an
2k
an为偶数,其中k为使an+1为奇数的正整数
,a1=1,
∴a2=3+5=8,
a3=
8
23
=1,
∴a4=3+5=8,
∴S1+S2+S3+S4=1+(1+8)+(1+8+1)+(1+8+1+8)=38.
故答案为:38.
点评:本题考查数列的前4项和的求法,是基础题,解题时要认真审题,注意递推公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱锥V-ABC中,△VAB是边长为2的正三角形,点V在平面ABC上的射影D在AB边上,△ABC是以B为直角顶点的等腰直角三角形.
(Ⅰ)求证:面VAB⊥面VBC;
(Ⅱ)求二面角B-VA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(1)若抽取后又放回,抽3次,①分别求恰2次为红球的概率及抽全三种颜色球的概率;②求抽到红球次数η的数学期望.
(2)若抽取后不放回,抽完红球所需次数为ξ求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为x的正半轴,建立平面直角坐标系.则曲线C的普通方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果执行如图所示的程框图,那么输出的S=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C1:
x2
a2
+
y2
b2
=1与椭圆C2:
y2
a2
+
x2
b2
=1(a>b>0)的交点在坐标轴上的射影恰好为这两个椭圆的焦点,则这两个椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合{x∈N|x<5}用列举法表示是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n≥3)从左向右的第1个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的左、右焦点为F1、F2,以F1F2为直径的圆与双曲线在第一象限内的渐近线交于P点,直线F1P的斜率为
1
2
,则双曲线的离心率为
 

查看答案和解析>>

同步练习册答案