精英家教网 > 高中数学 > 题目详情
从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(1)若抽取后又放回,抽3次,①分别求恰2次为红球的概率及抽全三种颜色球的概率;②求抽到红球次数η的数学期望.
(2)若抽取后不放回,抽完红球所需次数为ξ求ξ的分布列及期望.
考点:离散型随机变量的期望与方差,相互独立事件的概率乘法公式
专题:概率与统计
分析:(1)抽取后又放回,每次取球可看作独立重复试验,利用独立重复试验求解即可.
(2)抽取后不放回,ξ所有可能的取值为2,3,4,5,分别求出其概率即可.
解答: 解:(1)①抽1次得到红球的概率为
2
5
,得白球的概率为
2
5
,得黑球的概率为
1
5

所以恰2次为红色球的概率为p1=c32(
2
5
)2
3
5
=
36
125

抽全三种颜色的概率P2=
2
5
×
2
5
×
1
5
A
3
3
=
24
125


②η~B(3,
2
5
),Eη=
2
5
=
6
5
                       …(6分)
(2)ξ的可能取值为2,3,4,5,分布列为:…(10分)
即分布列为:


∴Eξ=4                …(13分)
点评:本题考查排列组和、离散型随机变量的分布列问题,同时考查利用概率分析、解决问题的能力.在取球试验中注意是否有放回.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

观察等式:
sin30°+sin90°
cos30°+cos90°
=
3
sin15°+sin75°
cos15°+cos75°
=1,
sin20°+sin40°
cos20°+cos40°
=
3
3
.照此规律,对于一般的角α、β,有等式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个顶点的坐标分别是A(0,2),B(1,1),C(1,3).若△ABC在一个切变变换T作用下变为△A1B1C1,其中B(1,1)在变换T作用下变为点B1(1,-1).
(1)求切变变换T所对应的矩阵M;
(2)将△A1B1C1绕原点O按顺时针方向旋转30°后得到△A2B2C2.求△A2B2C2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A、B是海面上位于东西方向相距5(3+
3
)海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号.位于B点南偏西60°且与B相距20
3
海里的C点的救援船立即前往营救,其航行速度为30海里/小时.求救援船直线到达D的时间和航行方向.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),点(1,e)在椭圆上,其中e为椭圆的离心率.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A、B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.试用|AF1|,|BF2|表示|PF1|+|PF2|,并证明|PF1|+|PF2|是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆M过点A(-
3
,0)、B(
3
,0)、C(0,-3),且与y轴的正半轴交于点D.
(Ⅰ)求圆M的方程;
(Ⅱ)已知弦EF过原点O.
(ⅰ)若|EF|=
15
,求EF所在的直线方程;
(ⅱ)若弦DF、CE与x轴分别交于P、Q两点,求证:|OP|=|OQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数满足:f(x)=f(x+4),则f(2012)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正整数,Sn为其前n项的和,对任意n∈N*,有an+1=
3an+5,an为奇数
an
2k
an为偶数,其中k为使an+1为奇数的正整数
,则当a1=1时,S1+S2+S3+S4=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若5a=2b=10 
c
2
,且abc≠0,则
c
a
+
c
b
=
 

查看答案和解析>>

同步练习册答案