精英家教网 > 高中数学 > 题目详情
观察等式:
sin30°+sin90°
cos30°+cos90°
=
3
sin15°+sin75°
cos15°+cos75°
=1,
sin20°+sin40°
cos20°+cos40°
=
3
3
.照此规律,对于一般的角α、β,有等式
 
考点:归纳推理
专题:推理和证明
分析:由已知可得:等式左边的分式是两个角的正弦和,分母是两个角的余弦和,等式右边是两个角和的半角的正切值.
解答: 解:由已知中:
sin30°+sin90°
cos30°+cos90°
=tan
30°+90°
2
=tan60°=
3

sin15°+sin75°
cos15°+cos75°
=tan
15°+75°
2
=tan45°=1,
sin20°+sin40°
cos20°+cos40°
=tan
20°+40°
2
=tan30°=
3
3


归纳可得:
sinα+sinβ
cosα+cosβ
=tan
α+β
2

故答案为:
sinα+sinβ
cosα+cosβ
=tan
α+β
2
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,四边形ABCD是平行四边形,AD=AB,PA=PC,AC∩BD=F,点E是PC的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:平面ADF⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学有6名爱好篮球的高三男生,现在考察他们的投篮水平与打球年限的关系,每人罚篮10次,其打球年限与投中球数如下表:
学生编号12345
打球年限x/年35679
投中球数y/个23345
(Ⅰ)求投中球数y关于打球年限x(x∈N,0≤x≤16)的线性回归方程,若第6名同学的打球年限为11年,试估计他的投中球数(精确到整数).
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
a
=
.
y
-
b
.
x
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2

(Ⅱ)现在从高三年级大量男生中调查出打球年限超过3年的学生所占比例为
1
4
,将上述的比例视为概率.现采用随机抽样方法在男生中每次抽取1名,抽取3次,记被抽取的3名男生中打球年限超过3年的人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

连续抛两次质地均匀的骰子得到的点数分别为m和n,将m,n作为Q点的横、纵坐标.
(1)记向量
a
=(m,n),
b
=(1,-1)的夹角为θ,求θ∈(0,
π
2
]的概率;
(2)求点Q落在区域|x-2|+|y-2|≤2内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD为矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(1)求证:平面PAD与平面PAB垂直;
(2)求直线PC与直线AB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知四棱锥P-ABCD是底面边长为2的菱形,且∠ABC=60°,PA=PB=
2
,PC=2.
(Ⅰ)求证:平面PAB⊥平面ABCD;
(Ⅱ)求二面角A-PC-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,曲线C1的参数方程为
x=2cosα
y=2+2sinα
,(α为参数),M是C1上动点,P点满足
OP
=2
OM
,P点的轨迹为曲线C2
(1)求C2的方程;
(2)在以O为极点,x轴正半轴为极轴的极坐标系中,射线θ=
π
3
与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|;
(3)若直线l:
x=4-
3
t
y=-t
(t为参数)和曲线C2交于E、F两点,且EF的中点为G,又点H(4,0),求|HG|.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱锥V-ABC中,△VAB是边长为2的正三角形,点V在平面ABC上的射影D在AB边上,△ABC是以B为直角顶点的等腰直角三角形.
(Ⅰ)求证:面VAB⊥面VBC;
(Ⅱ)求二面角B-VA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(1)若抽取后又放回,抽3次,①分别求恰2次为红球的概率及抽全三种颜色球的概率;②求抽到红球次数η的数学期望.
(2)若抽取后不放回,抽完红球所需次数为ξ求ξ的分布列及期望.

查看答案和解析>>

同步练习册答案