ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ
x=2cos¦Á
y=2+2sin¦Á
£¬£¨¦ÁΪ²ÎÊý£©£¬MÊÇC1É϶¯µã£¬PµãÂú×ã
OP
=2
OM
£¬PµãµÄ¹ì¼£ÎªÇúÏßC2
£¨1£©ÇóC2µÄ·½³Ì£»
£¨2£©ÔÚÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÉäÏߦÈ=
¦Ð
3
ÓëC1µÄÒìÓÚ¼«µãµÄ½»µãΪA£¬ÓëC2µÄÒìÓÚ¼«µãµÄ½»µãΪB£¬Çó|AB|£»
£¨3£©ÈôÖ±Ïßl£º
x=4-
3
t
y=-t
£¨tΪ²ÎÊý£©ºÍÇúÏßC2½»ÓÚE¡¢FÁ½µã£¬ÇÒEFµÄÖеãΪG£¬ÓÖµãH£¨4£¬0£©£¬Çó|HG|£®
¿¼µã£ºµãµÄ¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯,²ÎÊý·½³Ì»¯³ÉÆÕͨ·½³Ì
רÌâ£º×ø±êϵºÍ²ÎÊý·½³Ì
·ÖÎö£º£¨1£©ÓÉÇúÏßC1µÄ²ÎÊý·½³ÌΪ
x=2cos¦Á
y=2+2sin¦Á
£¬ÀûÓÃcos2¦Á+sin2¦Á=1»¯ÎªÇúÏßC1µÄ·½³ÌΪx2+£¨y-2£©2=4£¬
ÉèP£¨x£¬y£©£¬PµãÂú×ã
OP
=2
OM
£¬¿ÉµÃM(
x
2
£¬
y
2
)
£¬´úÈËÉÏÊö·½³Ì¼´¿ÉµÃ³öÇúÏßC2·½³Ì£®
£¨2£©°Ñ
x=¦Ñcos¦È
y=¦Ñsin¦È
´úÈëÇúÏßC1¡¢C2µÄÖ±½Ç×ø±ê·½³Ì¿ÉµÃ£ºÇúÏßC1¡¢C2µÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñ=4sin¦ÈºÍ¦Ñ=8sin¦È£®
µ±¦È=
¦Ð
3
ʱ£¬µÃ¦ÑA=2
3
£¬¦ÑB=4
3
£¬¼´¿ÉµÃ³ö|AB|£®
£¨3£©°ÑÖ±Ïß·½³Ì´úÈËÇúÏßC2·½³ÌµÃ£ºt2-2(
3
-1)t+4=0
£¬¿ÉµÃt1+t2=2(
3
-1)
£¬ÉèEFµÄÖеãG¶ÔÓ¦µÄ²ÎÊýΪt0£¬Ôòt0=
3
-1
ÇÒ|HG|=|-2t0|£®¼´¿ÉµÃ³ö£®
½â´ð£º ½â£º£¨1£©ÓÉÇúÏßC1µÄ²ÎÊý·½³ÌΪ
x=2cos¦Á
y=2+2sin¦Á
£¬»¯ÎªÇúÏßC1µÄ·½³ÌΪx2+£¨y-2£©2=4£¬
ÉèP£¨x£¬y£©£¬¡ßPµãÂú×ã
OP
=2
OM
£¬¡àM(
x
2
£¬
y
2
)
£¬´úÈËx2+£¨y-2£©2=4£¬
µÃx2+£¨y-4£©2=16£¬¼´ÎªÇúÏßC2·½³Ì£®
£¨2£©°Ñ
x=¦Ñcos¦È
y=¦Ñsin¦È
´úÈëÇúÏßC1¡¢C2µÄÖ±½Ç×ø±ê·½³Ì¿ÉµÃ£º
ÇúÏßC1¡¢C2µÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñ=4sin¦ÈºÍ¦Ñ=8sin¦È£®
µ±¦È=
¦Ð
3
ʱ£¬µÃ¦ÑA=2
3
£¬¦ÑB=4
3

Ôò|AB|=2
3
£®
£¨3£©°ÑÖ±Ïß·½³Ì´úÈËÇúÏßC2·½³ÌµÃ£ºt2-2(
3
-1)t+4=0
£¬
Ôòt1+t2=2(
3
-1)

ÉèEFµÄÖеãG¶ÔÓ¦µÄ²ÎÊýΪt0£¬Ôòt0=
3
-1
ÇÒ|HG|=|-2t0|£®
¡à|HG|=2(
3
-1)
£®
µãÆÀ£º±¾Ì⿼²éÁ˼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢ÏòÁ¿µÄÔËËã¡¢ÏÒ³¤¼ÆËã¡¢²ÎÊýµÄ¼¸ºÎÒâÒ壬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨Ô²M£º£¨x+1£©2+y2=16£¬¶¯Ô²N¹ýµãD£¨1£¬0£©£¬ÇÒºÍÔ²MÏàÇУ¬¼Ç¶¯Ô²µÄÔ²ÐÄNµÄ¹ì¼£ÎªC£®
£¨¢ñ£©ÇóÇúÏßCµÄ¹ì¼£·½³Ì£»
£¨¢ò£©ÒÑÖªÔ²O£ºx2+y2=3ÔÚyÖáÓұ߲¿·ÖÉÏÓÐÒ»µãP£¬¹ýµãP×÷¸ÃÔ²µÄÇÐÏßl£ºy=kx+m£¬ÇÒÖ±Ïßl½»ÇúÏßCÓÚA¡¢BÁ½µã£¬Çó¡÷ABDµÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf£¨x£©=
1
3
x3-x2+bxÔÚx=3´¦È¡µÃ¼«Öµ£®
£¨1£©Çóº¯ÊýµÄ½âÎöʽ£»
£¨2£©Çóº¯ÊýµÄµ¥µ÷µÝ¼õÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìµÈʽ£º
sin30¡ã+sin90¡ã
cos30¡ã+cos90¡ã
=
3
£¬
sin15¡ã+sin75¡ã
cos15¡ã+cos75¡ã
=1£¬
sin20¡ã+sin40¡ã
cos20¡ã+cos40¡ã
=
3
3
£®Õմ˹æÂÉ£¬¶ÔÓÚÒ»°ãµÄ½Ç¦Á¡¢¦Â£¬ÓеÈʽ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É踴Êýz=
1-2i
m-i
£¨m¡ÊR£©ÔÚ¸´Æ½ÃæÉ϶ÔÓ¦µÄµãΪZ£®
£¨1£©ÈôµãZλÓÚÖ±Ïßy=3xÉÏ£¬ÇómµÄÖµ£»
£¨2£©ÈôµãZλÓÚµÚÒ»ÏóÏÞ£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²CµÄ·½³Ì¿ÉÒÔ±íʾΪx2+y2-2x-4y+m=0£¬ÆäÖÐm¡ÊR£®
£¨1£©Èôm=1£¬ÇóÔ²C±»Ö±Ïßx+y-1=0½ØµÃµÄÏÒ³¤
£¨2£©ÈôÔ²CÓëÖ±Ïßl£ºx+2y-4=0ÏཻÓÚM¡¢NÁ½µã£¬ÇÒOM¡ÍON£¨OÎª×ø±êÔ­µã£©£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÖ±ÈýÀâÖùA1B1C1-ABCÖÐÈçͼ1£¬AC¡ÍBC£¬DΪABÖе㣬CB=1£¬AC=
3
£¬ÒìÃæÖ±ÏßC1DÓëA1B1Ëù³É½Ç´óСΪarccos
1
4
£®
£¨1£©ÔÚͼ2Öл­³ö´ËÈýÀâÖùµÄ×óÊÓͼºÍ¸©ÊÓͼ£»
£¨2£©ÇóÈýÀâ×¶C1-CBDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¡÷ABCÈý¸ö¶¥µãµÄ×ø±ê·Ö±ðÊÇA£¨0£¬2£©£¬B£¨1£¬1£©£¬C£¨1£¬3£©£®Èô¡÷ABCÔÚÒ»¸öÇбä±ä»»T×÷ÓÃϱäΪ¡÷A1B1C1£¬ÆäÖÐB£¨1£¬1£©Ôڱ任T×÷ÓÃϱäΪµãB1£¨1£¬-1£©£®
£¨1£©ÇóÇбä±ä»»TËù¶ÔÓ¦µÄ¾ØÕóM£»
£¨2£©½«¡÷A1B1C1ÈÆÔ­µãO°´Ë³Ê±Õë·½ÏòÐýת30¡ãºóµÃµ½¡÷A2B2C2£®Çó¡÷A2B2C2µÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯ÊýÂú×㣺f£¨x£©=f£¨x+4£©£¬Ôòf£¨2012£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸