精英家教网 > 高中数学 > 题目详情
连续抛两次质地均匀的骰子得到的点数分别为m和n,将m,n作为Q点的横、纵坐标.
(1)记向量
a
=(m,n),
b
=(1,-1)的夹角为θ,求θ∈(0,
π
2
]的概率;
(2)求点Q落在区域|x-2|+|y-2|≤2内的概率.
考点:几何概型,数量积表示两个向量的夹角
专题:应用题,概率与统计
分析:(1)本题考查的知识点是古典概型的意义,关键是要列出连掷两次骰子得到的点数分别为m和n,记向
a
=(m,n)的个数,及满足θ∈(0,
π
2
]的向量
a
的个数,再将它们代入古典概型的计算公式进行求解;
(2)掷两次骰子,会有6×6=36种可能,点P(m,n)落在区域|x-2|+|y-2|≤2内,即|m-2|+|n-2|≤2,有11种可能,代入古典概型的计算公式进行求解.
解答: 解:(1)连掷两次骰子得到的点数分别为m和n,记向量
a
=(m,n)有:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个基本事件
若θ∈(0,
π
2
],则m≥n,则满足条件的
a
=(m,n)有:
(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)
(4,1),(4,2),(4,3),(4,4),(5,1),(5,2)
(5,3),(5,4),(5,5),(6,1),(6,2),(6,3)
(6,4),(6,5),(6,6),共21个基本事件
则P=
21
36
=
7
12

(2)掷两次骰子,会有6×6=36种可能.
点P(m,n)落在区域|x-2|+|y-2|≤2内,即|m-2|+|n-2|≤2,则共有以下可能性.
①(1,1)(1,2)(1,3);
②(2,1)(2,2)(2,3)(2,4);
③(3,1)(3,2)(3,3);
④(4,2);
这11个点都满足|m-2|+|n-2|≤2,即所求概率为P=
11
36
点评:古典概型要求所有结果出现的可能性都相等,强调所有结果中每一结果出现的概率都相同.弄清一次试验的意义以及每个基本事件的含义是解决问题的前提,正确把握各个事件的相互关系是解决问题的关键.解决问题的步骤是:计算满足条件的基本事件个数,及基本事件的总个数,然后代入古典概型计算公式进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某耐磨厂对一批耐磨球的单个重量(单位:克)进行了抽样检测,并绘制出频率分布直方图,已知耐磨球单个重量的范围为[96,106],样本数据分组为[96,98),[98,100),[100,104),[104,106)
(1)求图中x的值;
(2)已知这批耐磨球共有5000个,试估计这批耐磨球中单个重量小于100克的球的个数;
(3)现从第一组到第五组(从左到右依次为第一组、第二组、…、第五组)中各取一求放入盒中充分搅拌,然后随机选出两球进行配对,若选出的两球所在的组数相邻,则称这两球为“姊妹球”,试求选出的两球为为“姊妹球”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,从顶点A1向底面ABC作垂线,垂足O恰好为AC边的中点,四边形A1ACC1为菱形,且∠A1AC=60°,在△ABC中,AB=BC=
2
,AB⊥BC.
(Ⅰ)求证:平面A1ACC1⊥平面ABC;
(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;
(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2+2(a∈R),f′(x)为f(x)的导函数.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)若对一切的实数x,有f′(x)≥|x|-
3
4
成立,求a的取值范围;
(Ⅲ)当a=0时,在曲线y=f(x)上是否存在两点A(x1,y1),B(x2,y2)(x1≠x2),使得曲线在A,B两点处的切线均与直线x=2交于同一点?若存在,求出交点纵坐标的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
3
x3-x2+bx在x=3处取得极值.
(1)求函数的解析式;
(2)求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2n
1+x2
-x在(0,+∞)上的最小值是an(n∈N+))
(1)求数列{an}的通项公式.
(2)证明:
1
a12
+
1
a22
+
1
a32
+…+
1
an2
1
2

(3)在点列An(2n,an)….中是否存在两点Ai,Aj 其中i,j∈N+,使直线AiAj的斜率为1,若存在,求出所有数对i,j,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察等式:
sin30°+sin90°
cos30°+cos90°
=
3
sin15°+sin75°
cos15°+cos75°
=1,
sin20°+sin40°
cos20°+cos40°
=
3
3
.照此规律,对于一般的角α、β,有等式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程可以表示为x2+y2-2x-4y+m=0,其中m∈R.
(1)若m=1,求圆C被直线x+y-1=0截得的弦长
(2)若圆C与直线l:x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A、B是海面上位于东西方向相距5(3+
3
)海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号.位于B点南偏西60°且与B相距20
3
海里的C点的救援船立即前往营救,其航行速度为30海里/小时.求救援船直线到达D的时间和航行方向.

查看答案和解析>>

同步练习册答案