精英家教网 > 高中数学 > 题目详情
12.下列函数中,与函数y=-3|x|的奇偶性相同,且在(-∞,0)上单调性也相同的是(  )
A.y=1-x2B.y=log2|x|C.y=-$\frac{1}{x}$D.y=x3-1

分析 根据题意,依次分析选项中函数奇偶性、单调性,综合即可得答案.

解答 解:根据题意,函数y=-3|x|为偶函数,在(-∞,0)上为增函数,
对于选项A、函数y=1-x2为二次函数,为偶函数,在(-∞,0)上为增函数,符合要求;
对于选项B、函数y=log2|x|是偶函数,在(-∞,0)上为减函数,不符合题意;
对于选项C、函数y=-$\frac{1}{x}$为奇函数,不符合题意;
对于选项D、函数y=x3-1为非奇非偶函数,不符合要求;
只有选项A符合要求,
故选:A.

点评 本题考查函数奇偶性、单调性的判定,关键是熟悉常见函数的单调性、奇偶性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图所示,四面体ABCD中,已知平面BCD⊥平面ABC,BD⊥DC,BC=6,AB=4$\sqrt{3}$,∠ABC=30°.
(I)求证:AC⊥BD;
(II)若二面角B-AC-D为45°,求直线AB与平面ACD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.己知对所有实数x,不等式x2log2$\frac{2(a-1)}{a}$+2xlog2$\frac{2a}{a-1}$+log2$\frac{(a-1)^{2}}{4{a}^{2}}$<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知在一次全国数学竞赛中,某市3000名参赛学生的初赛成绩统计如图所示.则在本次数学竞赛中,成绩在[80,90]上的学生人数为900.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=2$\sqrt{7}$,则|$\overrightarrow{b}$|=(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}(x+a),\;\;\;({|x|≤1})}\\{-\frac{10}{|x|+3}\;,\;\;\;({|x|>1})}\end{array}}\right.$,若f(0)=2,则a+f(-2)=(  )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知抛物线C:y2=4x的焦点为F,过F的直线l交抛物线C于A、B两点,弦AB的中点M到抛物线C的准线的距离为5,则直线l的斜率为(  )
A.$±\frac{{\sqrt{2}}}{2}$B.±1C.$±\frac{{\sqrt{6}}}{3}$D.$±\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y满足约束条件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-2y+1≤0}\\{2x-y+2≥0}\end{array}}\right.$,则Z=x2+y2的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数z=$\frac{2-i}{1-2i}$(i为虚数单位)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案