精英家教网 > 高中数学 > 题目详情
11.在四棱锥P-ABCD中,底面是正方形,侧棱PD⊥面ABCD,E是PC中点.
(1)证明PA∥面EDB;
(2)求异面直线PC与AD能成角的大小.

分析 (1)连接AC交BD于O,连接OE,证明OE∥PA,即可证明PA∥平面EDB;
(2)证明AD⊥平面PCD,即可证明AD⊥PC,可得异面直线PC与AD所成角的大小.

解答 证明:(1)连接AC交BD于O,连接OE
∵底面ABCD是正方形,∴O为AC中点,
∵在△PAC中,E是PC的中点,
∴OE∥PA,…(3分)
∵OE?平面EDB,PA?平面EDB,
∴PA∥平面EDB.…(5分)
(2)∵侧棱PD⊥底面ABCD,AD?底面ABCD,
∴PD⊥AD,
∵底面ABCD是正方形,
∴AD⊥CD,
又PD∩CD=D,
∴AD⊥平面PCD.…(8分)
∴AD⊥PC,
∴异面直线PC与AD所成角为90°.…(12分)

点评 本题考查线面平行、垂直的证明,考查学生分析解决问题的能力,正确运用线面平行、垂直的判定定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为$\sqrt{3}$,则此球的表面积为(  )
A.B.C.16πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平面直角坐标系中,已知三点A(1,-2),B(2,-1),C(0,-2),则|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是(  )
A.(-∞,5)B.(-∞,5]C.(5,+∞)D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“a>b”是“2a>2b”的_________条件.(  )
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求以原点为顶点,坐标轴为对称轴,并且经过点(6,4)的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设曲线C的参数方程为$\left\{\begin{array}{l}x=2+3cosθ\\ y=1+3sinθ\end{array}\right.$(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l的距离为$\frac{{7\sqrt{10}}}{10}$的点的个数为4个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若“0<x<1”是“(x-a)[x-(a+2)]<0”的充分不必要条件,则实数a的取值范围是(  )
A.[-1,0]B.(-1,0)C.(-∞,0]∪[1,+∞)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,-m),且$\overrightarrow{a}⊥\overrightarrow{b}$,则$|\overrightarrow a+\overrightarrow b|$=$\sqrt{10}$.

查看答案和解析>>

同步练习册答案