精英家教网 > 高中数学 > 题目详情
8.执行如图的程序框图,输出的S的值为(  )
A.6B.5C.4D.3

分析 根据程序框图的功能是求S=1•log23•log34•log45•log56•log67•log78•log88,判断终止程序运行的k值,利用对数换底公式求得S值.

解答 解:由程序框图得:第一次运行S=1•log23,k=3;
第二次运行S=1•log23•log24,k=4;
第二次运行S=1•log23•log34•log45,k=5;
第三次运行S=1•log23•log34•log45•log56,k=6;

直到k=8时,程序运行终止,此时S=1•log23•log34•log45•log56•log67•log78•log88=3;
故选:D.

点评 本题考查了循环结构的程序框图,判断程序框图的运行功能是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知a=0.33,b=30.3,c=0.23,则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C所对的边分别为a,b,c,$\sqrt{3}$bcosA=asinB.
(1)求A;
(2)若a=$\sqrt{2}$,$\frac{c}{a}$=$\frac{sinA}{sinB}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知PQ是半径为1的圆A的直径,B,C为不同于P,Q的两点,如图所示,记∠PAB=θ.
(1)若BC=$\sqrt{2}$,求四边形PBCQ的面积的最大值;
(2)若BC=1,求$\overrightarrow{BP}$•$\overrightarrow{CQ}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}为等比数列,则下列结论正确的是(  )
A.a1+a3≥2a2B.若a3>a1,则a4>a2C.若a1=a3,则a1=a2D.a12+a32≥2a22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x)=x1nx-ax2-x(a∈R).
(I)若函数f(x)在x=1处取得极值,求a的值;
(II)若函数f(x)的图象在直线y=-x图象的下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x)(x∈R)满足f(x+1)=-f(x),且当x∈(-1,1]时,f(x)=|x|,函数g(x)=$\left\{\begin{array}{l}sinπx,x>0\\-\frac{1}{x},x<0\end{array}$,则函数h(x)=f(x)-g(x)在区间[-5,5]上的零点的个数为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,且Sn=2n+1-2(n∈N*).
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ) 令bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若变量x,y满足约束条件$\left\{\begin{array}{l}{y≤4}\\{x+y-4≥0}\\{x-y≥0}\end{array}\right.$,则z=2x+y的最小值是(  )
A.4B.6C.8D.12

查看答案和解析>>

同步练习册答案