【题目】如图所示,三棱柱
的侧棱垂直于底面,且底面是边长为2的正三角形,
,点D,E,F分别是所在棱的中点.
![]()
(1)在线段
上找一点
使得平面
∥平面
,给出
点的位置并证明你的结论;
(2)在(1)的条件下,求二面角
的余弦值.
【答案】(1)
点与
点重合,证明见解析,(2)![]()
【解析】
(1)首先连接
,
.根据三角形中位线得到
,根据四边形
是平行四边形,得到
,即证平面
∥平面
.
(2)首先以
点为坐标原点,分别以
所在直线为
轴,
轴,
轴建立如图所示的空间直角坐标系.分别求平面
和平面
的法向量,再代入二面角公式计算即可.
(1)
点与
点重合,证明如下:
![]()
连接
,
.
因为
分别是
和
的中点,所以
.
因为
平面
,
平面
,所以
平面
.
因为
分别是
和
的中点,所以
,且
,
所以四边形
是平行四边形,所以
.
因为
平面
,
平面
,所以
平面
.
又因为
,所以平面
平面
.
(2)以
点为坐标原点,分别以
所在直线为
轴,
轴,
轴
建立如图所示的空间直角坐标系.
由(1)可得二面角
即
.
![]()
则
,
,
.
所以
,
.
因为平面
平面
,所以平面
的法向量即平面
的法向量,
设为
,则
.
令
,则
.
因为
,
,
.
所以
,
.
设平面
的一个法向量为
.
则
,
令
,则
.
则
.
由图易知二面角
的平面角是锐角,所以余弦值为
.
科目:高中数学 来源: 题型:
【题目】从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.
![]()
![]()
(1)求频率分布直方图中
的值;
(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;
(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为
,且成绩分布在
的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中
构成以2为公比的等比数列.
![]()
(1)求
的值;
(2)填写下面
列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?
文科生 | 理科生 | 合计 | |
获奖 | 6 | ||
不获奖 | |||
合计 | 400 |
(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为
,求
的分布列及数学期望.
附:
,其中
.
| .15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且过点
.
(1)求椭圆C的标准方程;
(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作
轴于Q,线段PQ的中点为M.直线AM与直线
交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:
卫生习惯状况类 | 垃圾处理状况类 | 体育锻炼状况类 | 心理健康状况类 | 膳食合理状况类 | 作息规律状况类 | |
有效答卷份数 | 380 | 550 | 330 | 410 | 400 | 430 |
习惯良好频率 | 0.6 | 0.9 | 0.8 | 0.7 | 0.65 | 0.6 |
假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.
(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;
(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;
(3)利用上述六类习惯调查的排序,用“
”表示任选一位第k类受访者是习惯良好者,“
”表示任选一位第k类受访者不是习惯良好者(
).写出方差
,
,
,
,
,
的大小关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
九章算术
中有一题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马,”马主曰:“我马食半牛”,今欲衰偿之,问各出几何?其意:今有牛、马、羊吃了别人的禾苗,苗主人要求赔偿五斗粟,羊主人说:“我羊所吃的禾苗只有马的一半”马主人说:“我马所吃的禾苗只有牛的一半”打算按此比例偿还,问羊的主人应赔偿______斗粟,在这个问题中牛主人比羊主人多赔偿______斗粟.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是直角梯形,侧棱
底面
,
垂直于
和
,
为棱
上的点,
,
.
![]()
(1)若
为棱
的中点,求证:
//平面
;
(2)当
时,求平面
与平面
所成的锐二面角的余弦值;
(3)在第(2)问条件下,设点
是线段
上的动点,
与平面
所成的角为
,求当
取最大值时点
的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从抛物线
上各点向x轴作垂线,垂线段中点的轨迹为E.
![]()
(1)求曲线E的方程;
(2)若直线
与曲线E相交于A,B两点,求证:
;
(3)若点F为曲线E的焦点,过点
的直线与曲线E交于M,N两点,直线
,
分别与曲线E交于C,D两点,设直线
,
斜率分别为
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com