19£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉϵÄÒ»¶¯µãPµ½×ó¡¢ÓÒ½¹µãF1£¬F2µÄ¾àÀëÖ®ºÍΪ2$\sqrt{2}$£¬µãPµ½ÍÖÔ²Ò»¸ö½¹µãµÄ×îÔ¶¾àÀëΪ$\sqrt{2}$+1
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©¹ýÓÒ½¹µãF2µÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã
¢ÙÈôyÖáÉÏÊÇ·ñ´æÔÚÒ»µãM£¨0£¬$\frac{1}{3}$£©Âú×ã|MA|=|MB|£¬ÇóÖ±ÏßlбÂÊkµÄÖµ£»
¢ÚÊÇ·ñ´æÔÚÕâÑùµÄÖ±Ïßl£¬Ê¹S¡÷ABOµÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£¨ÆäÖÐOÎª×ø±êÔ­µã£©£¿Èô´æÔÚ£¬ÇóÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨I£©ÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ½¹µãÔÚxÖáÉÏ£¬¸ù¾ÝÍÖÔ²µÄÐÔÖÊ¿ÉÖª£¬2a=2$\sqrt{2}$£¬a=$\sqrt{2}$£¬b2=a2-c2=1£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»
£¨II£©ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì£¬Ôòx1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1•x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬ÓÉÏÒ³¤¹«Ê½¿ÉÖª$\sqrt{1+{k}^{2}}$Ø­x1-x2Ø­=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{2\sqrt{2}£¨1+{k}^{2}£©}{1+2{k}^{2}}$£¬
¢ÙÉèÖ±Ïß·½³Ì£¬ÁªÁ¢£¬µÃµ½Öеã×ø±ê£¬¸ù¾Ý|MA|=|MB|£¬µÃµ½MGËùÔÚµÄÖ±ÏßÓëÖ±Ïßl´¹Ö±£¬¸ù¾ÝÁ½Ö±ÏßбÂÊÖ®»ýΪ-1£¬¼´¿ÉÇóµÃÖ±ÏßlбÂÊkµÄÖµ£»
¢Ú·Ö³ÉбÂÊ´æÔںͲ»´æÔÚÁ½ÖÖÇé¿öÌÖÂÛ£¬·Ö±ðÇóµÃÏÒ³¤Ø­ABØ­£¬Ô­µãµ½Ö±ÏߵľàÀ룬½ø¶øÇóµÃÃæ»ýµÄ±í´ïʽ£¬¸ù¾Ý²»µÈʽ¼´¿ÉµÃµ½½á¹û£®

½â´ð ½â£º£¨I£©ÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ½¹µãÔÚxÖáÉÏ£¬ÓÉPµ½×ó¡¢ÓÒ½¹µãF1£¬F2µÄ¾àÀëÖ®ºÍΪ2$\sqrt{2}$£¬
¸ù¾ÝÍÖÔ²µÄÐÔÖÊ¿ÉÖª£¬2a=2$\sqrt{2}$£¬a=$\sqrt{2}$£¬¡­1·Ö
µãPµ½ÍÖÔ²Ò»¸ö½¹µãµÄ×îÔ¶¾àÀëΪa+c=$\sqrt{2}$+1
¡àc=1£¬
b2=a2-c2=1£¬¡­2·Ö
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»¡­3·Ö
£¨II£©ÓÉ£¨¢ñ£©¿ÉÖª£ºF2£¨1£¬0£©£¬ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x-1£©£¬A £¨x1£¬y1£©£¬B £¨x2£¬y2£©£¬
ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³ÌµÃ£º$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+2k2£©x2-4k2x+2k2-2=0£¬
¡àx1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1•x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬
¡ày1+y2=k£¨x1+x2£©-2k=-$\frac{2k}{1+2{k}^{2}}$£¬
Ø­x1-x2Ø­=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{2\sqrt{2}\sqrt{1+{k}^{2}}}{1+2{k}^{2}}$£¬¡­4·Ö
¢ÙÓÉABµÄÖеã×ø±êΪG£¨$\frac{2{k}^{2}}{1+2{k}^{2}}$£¬-$\frac{k}{1+2{k}^{2}}$£©£¬¡­5·Ö
µ±k¡Ù1ʱ£¬ÓÉ|MA|=|MB|£¬µÃµ½MGËùÔÚµÄÖ±ÏßÓëÖ±Ïßl´¹Ö±£¬
ÓÉMGËùÔÚµÄÖ±ÏßбÂÊΪ$\frac{-\frac{k}{1+2{k}^{2}}-\frac{1}{3}}{\frac{2{k}^{2}}{1+2{k}^{2}}-0}$=$\frac{-2k-1-2{k}^{2}}{6{k}^{2}}$=-$\frac{1}{k}$£¬½âµÃ£ºk=1»òk=$\frac{1}{2}$£»¡­7·Ö
µ±k=0ʱ£¬ABµÄÖд¹ÏßËùÔÚµÄÖ±Ïߵķ½³ÌΪx=0£¬Âú×ãÌâÒ⣬
×ÛÉÏËùÊö£¬Ð±ÂÊkµÄȡֵΪ0£¬$\frac{1}{2}$£¬1£»¡­8·Ö
£¨2£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬´ËʱA£¨1£¬$\frac{\sqrt{2}}{2}$£©£¬B£¨1£¬-$\frac{\sqrt{2}}{2}$£©£¬µÃµ½Ø­ABØ­=$\sqrt{2}$£¬
¡àS¡÷ABO=$\frac{1}{2}$¡Á1¡Á$\sqrt{2}$=$\frac{\sqrt{2}}{2}$£¬¡­9·Ö
µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬Ø­ABØ­=$\sqrt{1+{k}^{2}}$•Ø­x1-x2Ø­=$\frac{2\sqrt{2}£¨1+{k}^{2}£©}{1+2{k}^{2}}$£¬¡­10·Ö

Ô­µãµ½Ö±ÏßlµÄ¾àÀëΪd=$\frac{Ø­kØ­}{\sqrt{1+{k}^{2}}}$£¬¡­11·Ö
¡àS¡÷ABO=$\frac{1}{2}$•Ø­ABØ­•d=$\sqrt{2}$Ø­ABØ­•d=$\sqrt{2}$$\sqrt{\frac{1}{4}-\frac{1}{4£¨1+2{k}^{2}£©^{2}}}$£¬¡­12·Ö
ÓÉ$\frac{1}{4£¨1+2{k}^{2}£©^{2}}$£¾0£¬
ËùÒÔS¡÷ABO£¼$\frac{\sqrt{2}}{2}$£¬
×ÛÉÏËùÊö£¬S¡÷ABOµÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$
ËùÒÔÂú×ãÌâÒâµÄÖ±Ïß´æÔÚ£¬·½³ÌΪx=1¡­14·Ö

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏÒ³¤¹«Ê½£¬Î¤´ï¶¨Àí£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÈý½ÇÐÎÃæ»ý¹«Ê½µÄ×ÛºÏÓ¦Ó㬿¼²éÍÖÔ²Óë²»µÈʽµÄ×ÛºÏÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ô²MµÄ·½³Ì£¨x-2£©2+y2=1£¬ÈôÖ±Ïßmx+y+2=0ÉÏÖÁÉÙ´æÔÚÒ»µãP£¬Ê¹µÃÒÔPΪԲÐÄ£¬1Ϊ°ë¾¶µÄÔ²ÓëÔ²MÓй«¹²µã£¬ÔòmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®m¡Ü0B£®m¡Ü-1C£®m¡Ý2D£®m¡Ü-$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚ¡÷ABCÖУ¬ÒÑÖªcosBcosC=sin2$\frac{A}{2}$£¬Ôò¡÷ABCµÄÐÎ×´ÊÇ£¨¡¡¡¡£©
A£®Ö±½ÇÈý½ÇÐÎB£®µÈ±ßÈý½ÇÐÎC£®µÈÑüÈý½ÇÐÎD£®µÈÑüÖ±½ÇÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÔ²C£ºx2+y2=5£®
£¨1£©ÇóÖ±Ïßy=x+2±»Ô²C½ØµÃµÄÏÒ³¤£»
£¨2£©Çó¹ýµã$N£¨\begin{array}{l}{1£¬}3\end{array}£©$µÄÔ²µÄÇÐÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÎªÑо¿Êýѧ³É¼¨ÊÇ·ñ¶ÔÎïÀí³É¼¨ÓÐÓ°Ï죬ijУÊýѧÉçÍŶԸÃУ1501°àÉÏѧÆÚÆÚÄ©³É¼¨½øÐÐÁËͳ¼Æ£¬½á¹ûÏÔʾÔÚÊýѧ³É¼¨¼°¸ñµÄ30ÈËÖУ¬ÓÐ16È˵ÄÎïÀí³É¼¨¼°¸ñ£¬ÔÚÊýѧ³É¼¨²»¼°¸ñµÄ20ÈËÖУ¬ÓÐ5È˵ÄÎïÀí³É¼¨¼°¸ñ£®
£¨1£©¸ù¾ÝÒÔÉÏ×ÊÁÏ»­³öÊýѧ³É¼¨ÓëÎïÀí³É¼¨µÄÁÐÁª±í£»
£¨2£©ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.050µÄǰÌáÏÂÈÏΪÊýѧ³É¼¨ÓëÎïÀí³É¼¨ÓйØÏµ£¿
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£»n=a+b+c+d
 P£¨K2¡Ýk0£© 0.10 0.050.010 
 k0 2.7063.841  6.635

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªËÄÀâ×¶P-ABCDÖУ¬PA¡ÍÆ½ÃæABCD£¬µ×ÃæABCDΪÁâÐΣ¬¡ÏABC=60¡ã£¬AB=2PA£¬EÊÇÏß¶ÎBCµÄÖе㣮
£¨¢ñ£©ÇóÒìÃæÖ±ÏßPEºÍCDËù³ÉµÄ½ÇµÄÓàÏÒÖµ£»
£¨¢ò£©ÇóÆ½ÃæPAEÓëÆ½ÃæPCDËù³ÉÈñ¶þÃæ½ÇµÄÓàÏÒÖµ£»
£¨¢ó£©ÔÚÏß¶ÎPDÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃCF¡ÎÆ½ÃæPAE£¬²¢¸ø³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÓëÍÖÔ²$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1¹²½¹µã£¬ÇÒ¹ýµã£¨4£¬0£©µÄÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{11}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈôÒ»¸öÈýÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬ÆäÖÐÈý¸öÊÓͼ¶¼ÊÇÖ±½ÇÈý½ÇÐΣ¬Ôò¸ÃÈýÀâ×¶Íâ½ÓÇòµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{24¦Ð}{3}$B£®$\frac{4¦Ð}{3}$C£®$\frac{2¦Ð}{3}$D£®$\frac{¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑ֪ij¹«Ë¾Éú²úÒ»ÖÖÒÇÆ÷Ôª¼þ£¬Äê¹Ì¶¨³É±¾Îª20ÍòÔª£¬Ã¿Éú²ú1Íò¼þÒÇÆ÷Ôª¼þÐèÁíÍâͶÈë8.1ÍòÔª£¬Éè¸Ã¹«Ë¾Ò»ÄêÄÚ¹²Éú²ú´ËÖÖÒÇÆ÷Ôª¼þxÍò¼þ²¢È«²¿ÏúÊÛÍ꣬ÿÍò¼þµÄÏúÊÛÊÕÈëΪf£¨x£©ÍòÔª£¬ÇÒ
f£¨x£©=$\left\{\begin{array}{l}32.4-\frac{1}{10}{x^2}£¨0£¼x¡Ü10£©\\ \frac{324}{x}-\frac{1000}{x^2}£¨x£¾10£©\end{array}$
£¨¢ñ£©Ð´³öÄêÀûÈóy£¨ÍòÔª£©¹ØÓÚÄê²úÆ·x£¨Íò¼þ£©µÄº¯Êý½âÎöʽ£»
£¨¢ò£©µ±Äê²úÁ¿Îª¶àÉÙÍò¼þʱ£¬¸Ã¹«Ë¾Éú²ú´ËÖÖÒÇÆ÷Ôª¼þËù»ñÄêÀûÈó×î´ó£¿
£¨×¢£ºÄêÀûÈó=ÄêÏúÊÛÊÕÈë-Äê×ܳɱ¾£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸