精英家教网 > 高中数学 > 题目详情
6.已知关于x,y的不等式组$\left\{\begin{array}{l}0≤x≤2\\ x+y-2≥0\\ kx-y+2≥0\end{array}\right.$所表示的平面区域的面积为3,则实数k的值为$\frac{1}{2}$.

分析 由约束条件作出可行域,然后代入三角形面积公式求得实数k的值.

解答 解:由约束条件$\left\{\begin{array}{l}0≤x≤2\\ x+y-2≥0\\ kx-y+2≥0\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x=2}\\{kx-y+2=0}\end{array}\right.$,解得B(2,2k+2),
∴|AB|=2k+2,
则${S}_{△ABC}=\frac{1}{2}(2k+2)•2=3$,即k=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.双曲线5x2+ky2=5的一个焦点是(2,0),则其渐近线方程为(  )
A.$y=±\frac{{\sqrt{2}}}{2}x$B.$y=±\sqrt{2}x$C.$y=±\frac{{\sqrt{3}}}{3}x$D.$y=±\sqrt{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆C:x2+y2-8y+14=0,直线l过点(1,1)
(1)若直线l与圆C相切,求直线l的方程;
(2)当l与圆C交于不同的两点A,B,且|AB|=2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{a+lnx}{x}$在点(1,f(1))处的切线与x轴平行.
(1)若函数f(x)在区间(m,m+1)上存在极值,求实数m的取值范围;
(2)求证:当x>1时,$\frac{1}{e+1}$•(x+1)•f(x)>$\frac{2}{e+1}$>$\frac{2{e}^{x-1}}{x{e}^{x}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线x=x0(x0>1)与函数y=log3x、函数y=log9x的图象分别交干A、B两点,若直线OA的斜率为k,则直线OB的斜率为(  )
A.2kB.$\frac{1}{2}$kC.3kD.$\frac{1}{3}$k

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.公差不等于零的等差数列{an}的前3项和S3=9,且a1.a2.a5成等比数列.
(1)求数列{an}的通项公式;
(2)已知Tn为数列$\left\{{\left.{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}}\right.$的前项和,若Tn≤λan+1对 一切n∈Z*恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow{b}$=(-sinα,cosα),$\overrightarrow{x}$=$\overrightarrow{a}$+(t2-3)$\overrightarrow{b}$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+$\overrightarrow{b}$,且$\overrightarrow{x}$•$\overrightarrow{y}$=0.
(1)求函数k=f(t)的表达式;
(2)若t∈[-1,3],求f(t)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,A、B是海岸线OM、ON上的两个码头,Q为海中一小岛,在水上旅游线AB上,测得tan∠MON=-3,OA=6km,Q到海岸线OM、ON的距离分别为2km,$\frac{7\sqrt{10}}{5}$km.
(1)求水上旅游线AB的长;
(2)海中P(PQ=6km,且PQ⊥OM)处的某试验产生强水波圆P.生成t小时的半径为r=6$\sqrt{6}$t${\;}^{\frac{3}{2}}$km,若与此同时,一艘游轮以18$\sqrt{2}$km/小时的速度自码头A开往码头B,试研究强水波是否波及游轮的航行?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中个,求证:a2sin2B+b2sin2A=2absinC.

查看答案和解析>>

同步练习册答案