精英家教网 > 高中数学 > 题目详情
15.如图,A、B是海岸线OM、ON上的两个码头,Q为海中一小岛,在水上旅游线AB上,测得tan∠MON=-3,OA=6km,Q到海岸线OM、ON的距离分别为2km,$\frac{7\sqrt{10}}{5}$km.
(1)求水上旅游线AB的长;
(2)海中P(PQ=6km,且PQ⊥OM)处的某试验产生强水波圆P.生成t小时的半径为r=6$\sqrt{6}$t${\;}^{\frac{3}{2}}$km,若与此同时,一艘游轮以18$\sqrt{2}$km/小时的速度自码头A开往码头B,试研究强水波是否波及游轮的航行?

分析 (1)利用△AOB的面积列出等式求出OB,然后使用余弦定理求出AB;
(2)求出AP,∠PAQ,假设航行t小时候到达D点,使用余弦定理求出PD,比较PD与r的大小关系即可判断强水波是否波及航行.

解答 解:(1)连结OQ,则S△OAQ=$\frac{1}{2}×OA×$2=6,S△OBQ=$\frac{1}{2}×OB×$$\frac{7\sqrt{10}}{5}$=$\frac{7\sqrt{10}}{10}$OB.
∵tan∠MON=-3,∴sin∠MON=$\frac{3\sqrt{10}}{10}$.cos∠MON=-$\frac{\sqrt{10}}{10}$,∴S△AOB=$\frac{1}{2}×OA×OB×sin∠MON$=$\frac{9\sqrt{10}}{10}$OB.
∴6+$\frac{7\sqrt{10}}{10}$OB=$\frac{9\sqrt{10}}{10}$OB.∴OB=3
∴AB=$\sqrt{O{A}^{2}+O{B}^{2}-2OA•OBcos∠MON}$=$\sqrt{162}$=9$\sqrt{2}$.
(2)在△ABO中,由正弦定理得$\frac{OB}{sinA}=\frac{AB}{sin∠MON}$,即$\frac{3\sqrt{10}}{sinA}=\frac{9\sqrt{2}}{\frac{3\sqrt{10}}{10}}$,∴sinA=$\frac{\sqrt{2}}{2}$.
延长PQ交OA于C,连结AP,则QC=2,AQ=2$\sqrt{2}$,cos∠AQP=-cos∠AQC=-sinA=-$\frac{\sqrt{2}}{2}$.∴sin∠AQP=$\frac{\sqrt{2}}{2}$.
∴AP=$\sqrt{A{Q}^{2}+P{Q}^{2}-2AQ•PQcos∠AQP}$=2$\sqrt{17}$.
∵$\frac{PQ}{sin∠PAQ}=\frac{AP}{sin∠AQP}$,∴sin∠PAQ=$\frac{3\sqrt{34}}{34}$.∴cos∠PAQ=$\frac{5\sqrt{34}}{34}$.
假设t小时候游轮航行到D处,连结PD,则0≤t$≤\frac{1}{2}$,AD=18$\sqrt{2}$t,
∴PD=$\sqrt{A{P}^{2}+A{D}^{2}-2AP•ADcos∠PAQ}$=$\sqrt{648{t}^{2}-360t+68}$.
令f(t)=PD2-r2=648t2-360t+68-216t3,则f′(t)=-648t2-1296t-360,
令f′(t)=0解得t=$\frac{1}{3}$或t=$\frac{5}{3}$(舍).
当$0≤t<\frac{1}{3}$时,f′(t)<0,当$\frac{1}{3}$<t$≤\frac{1}{2}$时,f′(t)>0,
∴fmin(t)=f($\frac{1}{3}$)=12>0.∴PD2-r2>0,即PD>r恒成立.
∴强水波不会波及游轮的航行.

点评 本题考查了正弦定理,余弦定理在解三角形中的应用,函数值的大小比较,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列函数中既是奇函数,又是其定义域上的增函数的是(  )
A.y=|x|B.y=lnxC.y=x${\;}^{\frac{1}{3}}$D.y=x-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知关于x,y的不等式组$\left\{\begin{array}{l}0≤x≤2\\ x+y-2≥0\\ kx-y+2≥0\end{array}\right.$所表示的平面区域的面积为3,则实数k的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,点E是平行四边形ABCD对角线BD的n(n∈N且n≥2)等分点中最靠近点D的那点.线段AE的延长线交CD于点F,若向量$\overrightarrow{AF}=\frac{1}{n-1}\overrightarrow{AB}+x\overrightarrow{AD}$,则实数x的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a∈R,关于x的不等式|ax-2|<3的解集是(-$\frac{5}{3}$,$\frac{1}{3}$),则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点A,B,C,D均在球O上,AB=BC=$\sqrt{3}$,AC=3,若三棱锥D-ABC体积的最大值为$\frac{3\sqrt{3}}{4}$,则球O的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设数列{an}的首项a1=1,且2an+1=an+$\frac{1-n}{n(n+1)}$,则an=${2}^{2-n}-\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线a与平面α所成的角为50°,直线b∥α,则b与α所成的角等于(  )
A.40°B.50°C.90°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)=x3-3x+2m,在区间$[{\frac{1}{3},3}]$上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则m的取值范围是(  )
A.m>6B.m>9C.m>11D.m>12

查看答案和解析>>

同步练习册答案