精英家教网 > 高中数学 > 题目详情
16.在△ABC中个,求证:a2sin2B+b2sin2A=2absinC.

分析 由条件利用正弦定理、三角恒等变换化简等式的左边为8R2sinAsinBsinC,利用正弦定理化简等式的右边也等于8R2sinAsinBsinC,从而得出结论.

解答 证明:在△ABC中,由正弦定理可得 $\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=2R,
可得:左边=a2sin2B+b2sin2A
=2R2(2sin22Asin2B+2sin2Bsin2A)
=2R2[(1-cos2A)sin2B+(1-cos2B)sin2A]
=2R2[sin2B+sin2A-(sin2Bcos2A+cos2Bsin2A)]
=2R2[sin2B+sin2A-sin(2A+2B)]
=2R2[2sin(A+B)cos(A-B)-2sin(A+B)cos(A+B)]
=4R2sin(A+B)[cos(A-B)-cos(A+B)]
=4R2sin(A+B)[2sinAsinB]
=8R2sinAsinBsinC
=2absinC=右边.
故原题得证.

点评 本题主要考查正弦定理及应用,注意边化为角,考查二倍角的正弦以及两角和的正弦公式,考查运算化简能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知关于x,y的不等式组$\left\{\begin{array}{l}0≤x≤2\\ x+y-2≥0\\ kx-y+2≥0\end{array}\right.$所表示的平面区域的面积为3,则实数k的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设数列{an}的首项a1=1,且2an+1=an+$\frac{1-n}{n(n+1)}$,则an=${2}^{2-n}-\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线a与平面α所成的角为50°,直线b∥α,则b与α所成的角等于(  )
A.40°B.50°C.90°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知复数z=cosθ+isinθ(θ∈R),求|z+2i|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求曲线C1:y=$\frac{1}{x}$与曲线C2:y═-x2的公切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,a=15,b=10,A=60°,CE、CF三等分∠C,求CE、CF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)=x3-3x+2m,在区间$[{\frac{1}{3},3}]$上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则m的取值范围是(  )
A.m>6B.m>9C.m>11D.m>12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在 R 上的函数 f (x)对任意0<x2<x1都有f(x1)-f(x2)<0,且函数y=f (x)的图象关于原点对称,若 f(2)=0,则不等式 f (x)>0的解集是(  )
A.(-2,0)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-∞,-2)∪(0,2)D.(-2,0)∪(2,+∞)

查看答案和解析>>

同步练习册答案