精英家教网 > 高中数学 > 题目详情
13.已知(ax+1)n=a0+a1x+a2x2+…+an-1xn-1+anxn(n∈N*),其中a1=3,a2=4,则实数a=$\frac{1}{3}$.

分析 根据a1=3,a2=4,利用组合知识建立方程组,即可得出结论.

解答 解:∵a1=3,a2=4,
∴Cn1a=3,①Cn2a2=4    ②
由①②可以得到na=3,
n(n-1)a2=8
∴n=9,a=$\frac{1}{3}$,
故答案为:$\frac{1}{3}$.

点评 本题考查二项式定理的应用.本题解题的关键是写出方程组,利用方程组的思想来解题,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=alnx-ax-2(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)的图象在点(2,f(2))处的切线的倾斜角为135°,且函数g(x)=f(x)-mx2-2x+4存在单调递减区间,求m的取值范围;
(3)试比较$\frac{ln{2}^{2}}{{2}^{2}}$+$\frac{ln{3}^{2}}{{3}^{2}}$+$\frac{ln{4}^{2}}{{4}^{2}}$+…+$\frac{ln{n}^{2}}{{n}^{2}}$与$\frac{(n-1)(2n+1)}{2(n+1)}$的大小(n∈N*,n≥2),并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算:lg0.01+($\frac{1}{8}$)${\;}^{\frac{1}{3}}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a∈R,则“a>2”是“a2>2a”的充分不必要条件(填:充分不必要、必要不充分、充要、既不充分又不必要)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知:命题p:椭圆$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{2-m}$=1的焦点在x轴上,命题q:不等式x2+2xy≤m(2x2+y2)对于一切整数x,y恒成立.
(1)若p为假命题,求实数m的取值范围;
(2)若p∧q是假命题,p∨q是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数Z=$\frac{-2+i}{{{i^{2015}}}}$(i为虚数单位),则复数Z的共轭复数$\overline Z$为(  )
A.-1+2iB.-1-2iC.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱ABC-A1B1C1中,AB=BC,D,E分别为BB1,AC1的中点.
(1)证明:DE⊥平面ACC1A1
(2)设AA1=AC=$\sqrt{2}$AB,求二面角A1-AD-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算复数$\frac{1-i}{3+i}$=$\frac{1}{5}-\frac{2}{5}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在△ABC中,a=2,∠A=$\frac{π}{3}$.
(1)求面积的最大值;
(2)求周长的最大值;
(3)若三角形为锐角三角形,求周长的取值范围;
(4)求b+2c的取值范围;
(5)$\frac{sinB}{cosC}$>$\sqrt{3}$,求∠C的取值范围.

查看答案和解析>>

同步练习册答案