精英家教网 > 高中数学 > 题目详情
9.若函数f(x)=ax(0<a≠1)在[-1,2]上的最大值为4,最小值为m,则m=2或$\frac{1}{4}$.

分析 按a>1,0<a<1两种情况进行讨论:借助f(x)的单调性及最大值先求出a值,再求出其最小值即可.

解答 解:①当a>1时,f(x)在[-1,2]上单调递增,
则f(x)的最大值为f(2)=a2=4,解得:a=2,
最小值m=f(-1)=$\frac{1}{a}$=$\frac{1}{2}$;
②当0<a<1时,f(x)在[-1,2]上单调递减,
则f(x)的最大值为f(-1)=$\frac{1}{a}$=4,解得a=$\frac{1}{4}$,
此时最小值m=f(2)=a2=$\frac{1}{16}$,
故答案为:2或$\frac{1}{4}$.

点评 本题考查指数函数的单调性及其应用,考查分类讨论思想,对指数函数f(x)=ax(a>0,a≠1),当a>1时f(x)递增;当0<a<1时f(x)递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=cosωx(ω>0)在$x∈[-\frac{π}{3},\frac{π}{4}]$上的最大、最小值之和为0,则ω的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线ax+y-1=0与直线4x+(a-3)y-2=0垂直,则实数a的值(  )
A.-1B.4C.$\frac{3}{5}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等比数列{an}中,a1+a3=10,a4+a6=$\frac{5}{4}$,则该数列的公比q为(  )
A.2B.1C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示的斜二测直观图 表示的平面图形是(  )
A.平行四边形B.等腰梯形C.直角梯形D.长方形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设m、n是两条不同的直线,α、β是两个不同的平面,则(  )
A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,n⊥α,则m⊥αD.若m∥α,α⊥β,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.抛物线y2=2px与直线2x+y+a=0交于A,B两点,其中A(1,2),设抛物线焦点为F,则|FA|+|FB|的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=logax(a>0且a≠1),函数g(x)=bx(b>0且b≠1),已知f(25)=2,g(2)=16,则f(5)+g(1)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=|cosx|•sinx,给出下列五个说法:
?①$f(\frac{2015π}{3})=-\frac{{\sqrt{3}}}{4}$;?
②若|f(x1)|=|f(x2)|,则x1=x2+kπ(k∈Z)
③f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上单调递增;
④函数f(x)的最小正周期为π;
⑤f(x)的图象关于点(π,0)成中心对称.
其中说法正确的序号是①③⑤.

查看答案和解析>>

同步练习册答案