精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)的对应关系如表所示,数列{an}满足a1=3,an+1=f(an),则a2016=1.
x123
f(x)321

分析 由题意可知,a1=3,分别求得a2,a3,a4,求得an=$\left\{\begin{array}{l}{1}&{n为偶数}\\{3}&{n为奇数}\end{array}\right.$,即可a2016

解答 解:an+1=f(an),a1=3.
∴a2=f(a1)=f(3)=1,
a3=f(a2)=f(1)=3,
a4=f(a3)=f(3)=1,

∴an=$\left\{\begin{array}{l}{1}&{n为偶数}\\{3}&{n为奇数}\end{array}\right.$,
∴a2016=1.
故答案为:1.

点评 本题考查列表表示函数对应关系的方法,考查数列通项公式,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{64}{3}$+8πB.24+8πC.16+8πD.8+16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平行四边形ABCD中,M,N分别是线段AB,BC的中点,且DM=1,DN=2,∠MDN=$\frac{π}{3}$;
(I)试用向量$\overrightarrow{AB}$,$\overrightarrow{AD}$表示向量$\overrightarrow{DM}$,$\overrightarrow{DN}$;
(II)求|${\overrightarrow{AB}}$|,|${\overrightarrow{AD}}$|;
(III)设O为△ADM的重心(三角形三条中线的交点),若$\overrightarrow{AO}$=x$\overrightarrow{AD}$+y$\overrightarrow{AM}$,求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,E,F分别是PD,PC上的点,且EF∥平面ABCD.
(1)求证:EF∥平面PAB;
(2)若三棱锥F-BCD与四棱锥P-ABCD的体积比为λ(0<λ<$\frac{1}{2}$),点G是线段BC上的一点,且平面EFG∥平面PAB,求$\frac{BG}{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)的定义域为R.?a,b∈R,若此函数同时满足:
①当a+b=0时,有f(a)+f(b)=0;
②当a+b>0时,有f(a)+f(b)>0,
则称函数f(x)为Ω函数.
在下列函数中:
①y=x+sinx;
②y=3x-($\frac{1}{3}$)x
③y=$\left\{\begin{array}{l}{0,x=0}\\{-\frac{1}{x},x≠0}\end{array}\right.$
是Ω函数的为①②.(填出所有符合要求的函数序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点O为△ABC内一点,∠AOB=120°,OA=1,OB=2,过O作OD垂直AB于点D,点E为线段OD的中点,则$\overrightarrow{OE}$•$\overrightarrow{EA}$的值为(  )
A.$\frac{5}{14}$B.$\frac{2}{7}$C.$\frac{3}{14}$D.$\frac{3}{28}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=(m+5)x${\;}^{\frac{1}{m+3}}}$是幂函数,则对函数的单调区间描述正确的是(  )
A..单调减区间为 (-∞,+∞)B.单调减区间为(0,+∞)
C.单调减区间为  (-∞,0)∪(0,+∞)D.单调减区间为(-∞,0)和(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{-{x}^{2}+bx+c,x≤0}\end{array}\right.$满足f(0)=1,且f(0)+2f(-1)=0,那么函数g(x)=f(x)+x有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{2x}{{x}^{2}-1}$.
(1)求f[f(2)]的值;
(2)判断f(x)的奇偶性并证明.

查看答案和解析>>

同步练习册答案