【题目】已知椭圆
,
为椭圆的左、右焦点,点
在直线
上且不在
轴上,直线
与椭圆的交点分别为
和
,
为坐标原点.
设直线
的斜率为
,证明:![]()
问直线
上是否存在点
,使得直线
的斜率
满足
?若存在,求出所有满足条件的点
的坐标;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】已知a,b是异面直线,给出下列结论:
①一定存在平面
,使直线
平面
,直线
平面
;
②一定存在平面
,使直线
平面
,直线
平面
;
③一定存在无数个平面
,使直线b与平面
交于一个定点,且直线
平面
.
则所有正确结论的序号为( )
A.②③B.①③C.①②D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,
与
都为等边三角形,且侧面
与底面
互相垂直,
为
的中点,点
在线段
上,且
,
为棱
上一点.
![]()
(1)试确定点
的位置,使得
平面
;
(2)在(1)的条件下,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是由非负整数组成的无穷数列,该数列前n项的最大值记为
,第n项之后的各项
的最小值记为
,设
.
(1)若
为
,是一个周期为4的数列,写出
的值;
(2)设d为非负整数,证明:
)的充要条件是
是公差为d的等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为
,高为
,圆锥的母线长为
.
![]()
(1)求这种“笼具”的体积(结果精确到0.1
);
(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为F,F关于原点的对称点为P,过F作
轴的垂线交抛物线于M,N两点,给出下列三个结论:
①
必为直角三角形;
②直线
必与抛物线相切;
③
的面积为
.其中正确的结论是___.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面四边形
中(图1),
为
的中点,
,且
,现将此平面四边形沿
折起,使得二面角
为直二面角,得到一个多面体,
为平面
内一点,且
为正方形(图2),
分别为
的中点.
![]()
![]()
(1)求证:平面
//平面
;
(2)在线段
上是否存在一点
,使得平面
与平面
所成二面角的余弦值为
?若存在,求出线段
的长,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com