8£®Èçͼ£¬F1£¬F2·Ö±ðÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬ÇÒ½¹¾àΪ2$\sqrt{2}$£¬¶¯ÏÒABƽÐÐÓÚxÖᣬÇÒ|F1A|+|F2A|=4£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÈôµãPÊÇÍÖÔ²CÉÏÒìÓÚµãA£¬BµÄÈÎÒâÒ»µã£¬ÇÒÖ±ÏßPA£¬PB·Ö±ðÓëyÖá½»ÓÚµãM£¬N£¬ÈôMF2£¬NF2µÄбÂÊ·Ö±ðΪk1£¬k2£¬Çók1+k2µÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©ÓÉÒÑÖªÇóµÃ$c=\sqrt{2}$£¬a=2£¬½áºÏÒþº¬Ìõ¼þµÃµ½b2=a2-c2=2£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©ÉèB£¨x0£¬y0£©£¬P£¨x1£¬y1£©£¬ÔòA£¨-x0£¬y0£©£¬ÓÉÖ±Ïß·½³ÌµÄб½ØÊ½ÇóµÃÖ±ÏßAPµÄ·½³Ì£¬È¡x=0£¬ÇóµÃyÖµ£¬¼´¿ÉµÃµ½M×ø±ê£¬Í¬Àí¿ÉµÃNµÄ×ø±ê£®ÓÉÁ½µãÇóбÂʵõ½k1£¬k2£¬½èÖúÓÚA£¬BÔÚÍÖÔ²CÉÏ£¬µÃµ½k1•k2=1£¬Ôò$|{k}_{1}+{k}_{2}|=|{k}_{1}|+|{k}_{2}|¡Ý2\sqrt{|{k}_{1}||{k}_{2}|}=2$£®ÔÙÓÉk1=k2ʱM£¬NÖØºÏ£¬¼´A£¬BÖØºÏÓëÌõ¼þ²»·û£¬µÃk1¡Ùk2£®¼´µÈºÅ²»³ÉÁ¢£¬´Ó¶øÇóµÃk1+k2µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©¡ß½¹¾àΪ$2\sqrt{2}$£¬¡à$2c=2\sqrt{2}$£¬$c=\sqrt{2}$£®
ÓÖ|F1A|+|F2A|=4£¬µÃ2a=4£¬¡àa=2£®
Ôòb2=a2-c2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£»
£¨¢ò£©ÉèB£¨x0£¬y0£©£¬P£¨x1£¬y1£©£¬ÔòA£¨-x0£¬y0£©£¬
Ö±ÏßAPµÄ·½³ÌΪ$y-{y}_{1}=\frac{{y}_{1}-{y}_{0}}{{x}_{1}+{x}_{0}}£¨x-{x}_{1}£©$£¬Áîx=0£¬µÃ$y=\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{{x}_{1}+{x}_{0}}$£®
¹Ê$M£¨0£¬\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{{x}_{1}+{x}_{0}}£©$£¬
ͬÀí¿ÉµÃ$N£¨0£¬\frac{{x}_{1}{y}_{0}-{x}_{0}{y}_{1}}{{x}_{1}-{x}_{0}}£©$£®
¡à${k}_{1}=-\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{\sqrt{2}£¨{x}_{1}+{x}_{0}£©}$£¬${k}_{2}=-\frac{{x}_{1}{y}_{0}-{x}_{0}{y}_{1}}{\sqrt{2}£¨{x}_{1}-{x}_{0}£©}$
Òò´Ë${k}_{1}•{k}_{2}=\frac{1}{2}•\frac{{{x}_{1}}^{2}{{y}_{0}}^{2}-{{x}_{0}}^{2}{{y}_{1}}^{2}}{{{x}_{1}}^{2}-{{x}_{0}}^{2}}$£®
¡ßA£¬BÔÚÍÖÔ²CÉÏ£¬¡à${{y}_{1}}^{2}=2-\frac{1}{2}{{x}_{1}}^{2}£¬{{y}_{0}}^{2}=2-\frac{1}{2}{{x}_{0}}^{2}$£®
¹Ê${k}_{1}•{k}_{2}=\frac{1}{2}•\frac{{{x}_{1}}^{2}£¨2-\frac{1}{2}{{x}_{0}}^{2}£©-{{x}_{0}}^{2}£¨2-\frac{1}{2}{{x}_{1}}^{2}£©}{{{x}_{1}}^{2}-{{x}_{0}}^{2}}$=1
¡à$|{k}_{1}+{k}_{2}|=|{k}_{1}|+|{k}_{2}|¡Ý2\sqrt{|{k}_{1}||{k}_{2}|}=2$£®
ÓÖ¡ßµ±k1=k2ʱM£¬NÖØºÏ£¬¼´A£¬BÖØºÏ£¬ÕâÓëÌõ¼þ²»·û£¬¡àk1¡Ùk2£®
Òò´Ëk1+k2µÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-2£©¡È£¨2£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Óã¬ÑµÁ·ÁË¡°Éá¶ø²»Ç󡱵ĽâÌâ˼Ïë·½·¨£¬¿¼²éÁËѧÉúµÄÕûÌåÔËËãÄÜÁ¦£¬ÊÇѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªa£¬b¡ÊR£¬º¯Êýf£¨x£©=-$\frac{1}{3}{x}^{3}+\frac{a}{2}{x}^{2}+bx$ÓÐÁ½¸ö¼«Öµµãx1£¬x2£¨x1£¼x2£©£¬f£¨x2£©=x2£¬Ôò·½³Ìf2£¨x£©-af£¨x£©-b=0µÄʵ¸ù¸öÊý£¨¡¡¡¡£©
A£®4B£®3C£®2D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚ¡÷ABCÖУ¬|$\overrightarrow{AB}$|=2£¬|$\overrightarrow{AC}$|=3£¬$\overrightarrow{AB}$•$\overrightarrow{AC}$£¼0£¬ÇÒ¡÷ABCµÄÃæ»ýΪ$\frac{3}{2}$£¬Ôò¡ÏBAC=150¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬PC¡Íµ×ÃæABCD£¬µ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬AB¡ÍAD£¬AB¡ÎCD£¬AB=2AD=2CD=2£¬PC£¼2£¬EÊÇPBµÄÖе㣮
£¨1£©ÇóÖ¤£ºÆ½ÃæEAC¡ÍÆ½ÃæPBC£»
£¨2£©ÈôÖ±ÏßPAÓëÆ½ÃæEACËù³É½ÇµÄÕýÏÒֵΪ$\frac{\sqrt{2}}{3}$£¬ÇóÆ½ÃæPACÓëÆ½ÃæACE¼Ð½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬µãM£¬N£¬P·Ö±ðΪAB1£¬BC1£¬DD1µÄÖе㣬¸ø³öÏÂÁнáÂÛ£º
¢ÙÒìÃæÖ±ÏßAB1£¬BC1Ëù³ÉµÄ½ÇΪ$\frac{¦Ð}{3}$
¢ÚMN¡ÎÆ½ÃæABCD
¢ÛËÄÃæÌåA-A1B1NµÄÌå»ýΪ$\frac{1}{4}$
¢ÜMN¡ÍBP
ÔòÕýÈ·½áÂÛµÄÐòºÅΪ¢Ù¢Ú¢Ü£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚÈýÀâ×¶P-ABCÖУ¬PA=PB=2£¬PC=4£¬¡ÏAPB=¡ÏBPC=60¡ã£¬cos¡ÏAPC=$\frac{1}{4}$£®
£¨¢ñ£©Æ½ÃæPAB¡ÍÆ½ÃæPBC£»
£¨¢ò£©EΪBCÉϵÄÒ»µã£®ÈôÖ±ÏßAEÓëÆ½ÃæPBCËù³ÉµÄ½ÇΪ30¡ã£¬ÇóBEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÁ½µãA£¨-1£¬0£©¡¢B£¨1£¬0£©£¬µãP£¨x£¬y£©ÊÇÖ±½Ç×ø±êÆ½ÃæÉϵ͝µã£¬Èô½«µãPµÄºá×ø±ê±£³Ö²»±ä¡¢×Ý×ø±êÀ©´óµ½$\sqrt{2}$±¶ºóµÃµ½µã$Q£¨x£¬\sqrt{2}y£©$Âú×ã$\overrightarrow{AQ}•\overrightarrow{BQ}=1$£®
£¨1£©Ç󶯵ãPËùÔÚÇúÏßCµÄ¹ì¼£·½³Ì£»
£¨2£©¹ýµãB×÷бÂÊΪ$-\frac{{\sqrt{2}}}{2}$µÄÖ±Ïßl½»ÇúÏßCÓÚM¡¢NÁ½µã£¬ÇÒÂú×ã$\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OH}=\overrightarrow 0$£¬ÓÖµãH¹ØÓÚÔ­µãOµÄ¶Ô³ÆµãΪµãG£¬
¢ÙÇóµãH£¬GµÄ×ø±ê£»
¢ÚÊÔÎÊËĵãM¡¢G¡¢N¡¢HÊÇ·ñ¹²Ô²£¬Èô¹²Ô²£¬Çó³öÔ²ÐÄ×ø±êºÍ°ë¾¶£»Èô²»¹²Ô²£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìºÓÄÏÉÌÇðµÚÒ»¸ß¼¶ÖÐѧÄê¸ßÈýÉÏÀí¿ªÑ§Ãþµ×ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

ÔÚÊýÁÐÖУ¬£¬ÇÒÊýÁÐÊǵȱÈÊýÁУ¬Ôò_____________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®»¯¼ò£º$\sqrt{1+sin80¡ã}+\sqrt{1+cos80¡ã}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸