精英家教网 > 高中数学 > 题目详情
16.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PC<2,E是PB的中点.
(1)求证:平面EAC⊥平面PBC;
(2)若直线PA与平面EAC所成角的正弦值为$\frac{\sqrt{2}}{3}$,求平面PAC与平面ACE夹角的余弦值.

分析 (1)由题意可得AC⊥PC,再由勾股定理可得AC⊥BC,可得AC⊥平面PBC,进而可判平面EAC平面PBC;
(2)以C为原点,建立空间直角坐标系如图所示,分别可得平面PAC和EAC的法向量,待定系数可得a值,由向量的夹角公式可得答案.

解答 解:(1)∵PC⊥平面ABCD,AC?平面ABCD,∴AC⊥PC,
∵AB=2,AD=CD=1,∴AC=BC=$\sqrt{2}$,
∴AC2+BC2=AB2,∴AC⊥BC,
又BC∩PC=C,∴AC⊥平面PBC,
∵AC?平面EAC,∴平面EAC平面PBC;
(2)以C为原点,建立空间直角坐标系如图所示,
则C(0,0,0),A(1,1,0),B(1,-1,0),
设P(0,0,a)(a>0),则E($\frac{1}{2}$,-$\frac{1}{2}$,$\frac{a}{2}$),
∴$\overrightarrow{CA}$=(1,1,0),$\overrightarrow{CP}$=(0,0,a)(a>0),
$\overrightarrow{CE}$=($\frac{1}{2}$,-$\frac{1}{2}$,$\frac{a}{2}$),$\overrightarrow{PA}$=(1,1,-a),
设$\overrightarrow{m}$=(x,y,z)为平面PAC的法向量,
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CP}=az=0}\\{\overrightarrow{m}•\overrightarrow{CA}=x+y=0}\end{array}\right.$,可取$\overrightarrow{m}$=(1,-1,0)
同理平面EAC的法向量$\overrightarrow{n}$=(a,-a,-2),
依题意,设直线PA与平面EAC所成角为θ,
则sinθ=|cos<$\overrightarrow{PA}$,$\overrightarrow{n}$>|=$\frac{2a}{\sqrt{{a}^{2}+2}•\sqrt{2{a}^{2}+4}}$=$\frac{\sqrt{2}}{3}$,
解得a=1,或a=2(舍去,此时不满足PC<2),
∴$\overrightarrow{n}$=(1,-1,-2),
∴|cos<$\overrightarrow{m}$,$\overrightarrow{n}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{3}}{3}$
∴平面PAC与平面ACE夹角的余弦值为$\frac{\sqrt{3}}{3}$

点评 本题考查空间向量法解决立体几何问题,涉及平面与平面垂直的判定,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sin(ωx+$\frac{π}{3}$)+$\sqrt{3}$sin(ωx-$\frac{π}{6}$)(ω>0,x∈R)的最小正周期为π,则(  )
A.f(x)为偶函数B.f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上单调递增
C.x=$\frac{π}{2}$为f(x)的图象的一条对称轴D.($\frac{π}{2}$,0)为f(x)的图象的一个对称中心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:x2=2py(p>0),抛物线上一点Q(m,$\frac{1}{2}$)到焦点的距离为1.
(Ⅰ)求抛物线C的方程
(Ⅱ)设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(n∈N*
(ⅰ)记△AOB的面积为f(n),求f(n)的表达式
(ⅱ)探究是否存在不同的点A,使对应不同的△AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=xlnx.
(1)讨论函数f(x)的单调性;
(2)对于任意正实数x,不等式f(x)>kx-$\frac{1}{2}$恒成立,求实数k的取值范围;
(3)是否存在最小的正常数m,使得:当a>m时,对于任意正实数x,不等式f(a+x)<f(a)•ex恒成立?给出你的结论,并说明结论的合理性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知:扇形OAB的半径为12厘米,∠AOB=150°,若由此扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径是5厘米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥P-ABC中,平面APC⊥平面ABC,且PA=PB=PC=4,AB=BC=2.
(1)求三棱锥P-ABC的体积VP-ABC
(2)求直线AB与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,且焦距为2$\sqrt{2}$,动弦AB平行于x轴,且|F1A|+|F2A|=4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若点P是椭圆C上异于点A,B的任意一点,且直线PA,PB分别与y轴交于点M,N,若MF2,NF2的斜率分别为k1,k2,求k1+k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.
(1)验证g(x)=x+sin$\frac{x}{3}$是以6π为周期的余弦周期函数;
(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;
(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充要条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北邢台市高一上学期月考一数学试卷(解析版) 题型:选择题

若函数,则函数与函数的图象交点的个数为( )

A.0 B.1

C.2 D.3

查看答案和解析>>

同步练习册答案