精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
.
x-1
 
.
+
.
ax+1
 
.

(1)若a=1.求f(x)的最小值.
(2)若a=2,求不等式f(x)<2的解集.
考点:绝对值不等式的解法,函数的最值及其几何意义
专题:不等式
分析:(1)将a=1代入f(x),根据绝对值的意义求出即可;(2)通过讨论x的范围,得到不等式组,解出即可.
解答: 解:(1)a=1时,f(x)=|x-1|+|x+1|,
根据绝对值的意义当-1≤x≤1时,f(x)=x-1-x+1=2,最小值是2;
(2)a=2时,f(x)=|x-1|+|2x+1|<2,
不等式可化为:
x≤-
1
2
1-x-2x-1<2
-
1
2
<x≤1
1-x+2x+1<2
x>1
x-1+2x+1<2

解得:-
2
3
<x<0,
∴不等式f(x)<2的解集是(-
2
3
,0).
点评:本题考查了绝对值不等式的意义以及解法,本题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a+b+c=1,求证:
(1)2(ab+bc+ca)+3
3a2b2c2
≤1
(2)a2+b2+c2
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1-sin6α-cos6α
sin2α-sin4α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项为an=
3n
3n+2

(1)若Sn是数列{
1
an
}的前n项和,试求Sn
(2)若存在满足m+n=2s的正整数m,s,n,使am-1,as-1,an-1成等比数列,求证:m=n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项之和为Sn(n∈N*),且满足an+Sn=2n+1.
(1)求证数列{an-2}是等比数列,并求数列{an}的通项公式;
(2)求证:
1
2a1a2
+
1
22a2a3
+…+
1
2nanan+1
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设A,B为锐角三角形的两个内角,则复数z=(
1
tanB
-tanA)+(tanB-
1
tanA
)i
对应的点位于复平面的第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知最小正周期为2的函数f(x)在区间[-1,1]上的解析式是f(x)=x2,则函数f(x)在实数集R上的图象与函数y=g(x)=|log5x|的图象的交点的个数是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4,给出如下四个结论:
①2015∈[3];
②-2∈[2];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④整数a、b属于同一“类”的充要条件是“a-b∈[0]”.
其中正确的结论个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,一次函数y=kx+b+2(k≠0)的图象与x轴、y轴的正半轴分别交于A,B两点,且使得△OAB的面积值等于|OA|+|OB|+3.
(1)用b表示k;
(2)求△OAB面积的最小值.

查看答案和解析>>

同步练习册答案