精英家教网 > 高中数学 > 题目详情
AB
=
2
2
a
+5
b
),
BC
=-2
a
+8
b
CD
=3(
a
-
b
),则共线的三点是(  )
A、A,B,C
B、B,C,D
C、A,B,D
D、A,C,D
考点:平行向量与共线向量
专题:平面向量及应用
分析:由于
BD
=
BC
+
CD
=
a
+5
b
=
2
AB
,即可得出.
解答: 解:∵
BD
=
BC
+
CD
=-2
a
+8
b
+3(
a
-
b
)=
a
+5
b
=
2
AB

∴共线的三点是A,B,D.
故选:C.
点评:本题考查了向量的运算、共线定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简
NQ
+
QP
+
MN
-
MP

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>b>0,则
2ab
a+b
a+b
2
ab
的大小关系(用不等号连接)是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数图象为f(x)=x2+ax+a-2的图象与x轴有两个交点,且两个交点之间距离为2
5
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的长、短轴都在坐标轴上,和椭圆
x2
9
+
y2
4
=1共焦点,并经过点P(3,-2),则椭圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(x-1)ex+x2(m∈R)
(1)若m=-1,求函数f(x)的单调区间;
(2)当m≤-1时,求函数f(x)在[m,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
2
sin(x+
π
4
)-
1
3
=2sinx,求sin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线的顶点在原点,焦点在y轴正半轴上,抛物线上一点的横坐标为2,且该点到焦点的距离为2.
(1)求抛物线的标准方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=kx+t交抛物线于不同的两点M,N,若抛物线上一点C满足
OC
=λ(
OM
+
ON
)(λ>0),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数 f(x)=
1
3
x3-(2a+1)x2
+3a(a+2)x+1,a∈R.
(1)当a=0时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)当a=-1时,求函数y=f(x)在[0,4]上的最大值和最小值;
(3)当函数y=f′(x)在(0,4)上有唯一的零点时,求实数a的取值范围.

查看答案和解析>>

同步练习册答案