精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2+ax+a)ex(e为自然对数的底数).
(1)若a=-1,求函数f(x)的单调区间;
(2)是否存在实数a,使函数f(x)在R上是单调增函数?若存在,求出a的值;若不存在,请说明理由.
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)若a=-1,求出函数的导数,即可求函数f(x)的单调区间;
(2)利用函数单调性和导数之间的关系建立方程关系即可得到结论.
解答: 解:(1)若a=-1,则f′(x)=(x2+x-2)ex
由f′(x)=(x2+x-2)ex>0,解得x>1或x<-2,即函数的增区间为(-∞,-2)与(1,+∞),
由f′(x)=(x2+x-2)ex<0,解得-2<x<1,即函数的减区间为(-2,1);
(2)∵f′(x)=[x2+(a+2)x+2a]ex,由f′(x)≥0⇒x2+(a+2)x+2a≥0对于x∈R恒成立,
则△=(a+2)2-8a≤0⇒(a-2)2≤0,
又(a-2)2≥0,∴a=2
点评:本题主要考查函数单调性和导数之间的关系,要求熟练掌握导数的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|1<x<4},B={x|x2-2x-3≤0},则A∩B=(  )
A、(-1,3)
B、(1,3]
C、[3,4)
D、[-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
1
2
(a-3)x2-a(2a-3)x+b在(-1,1)上不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A、B、C的对边分别为a、b、c,sin2A+sin2C-
2
sinAsinC=sin2B.
(1)求B;
(2)若A=75°,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是平面内一组基底,证明:当λ1
e1
+λ2
e2
=0时,恒有λ12=0成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位从一所学校招收某类特殊人才.对20位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
逻辑思维能力

运动协调能力
一般 良好 优秀
一般 2 2 1
良好 4 b 1
优秀 1 3 a
例如,表中运动协调能力良好且逻辑思维能力一般的学生有4人.由于部分数据丢失,只知道从这20位参加测试的学生中随机抽取一位,抽到运动协调能力优秀的学生的概率为
3
10

(Ⅰ)求a,b的值;
(Ⅱ)从参加测试的20位学生中任意抽取2位,设运动协调能力或逻辑思维能力优秀的学生人数为ξ,求随机变量ξ的分布列及其数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-kx+b,其中k,b为实数.
(Ⅰ)当b=6时,不等式f(x)<0的解集为{x|2<x<m},求实数k及m的值;
(Ⅱ)当b=2时,是否存在实数k,使得不等式f(sinx)≥k-1对任意的实数x∈[0,
π
2
]恒成立?若存在,求k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知(
x
-
2
3x
n展开式中所有项的二项式系数和为32,则其展开式中的常数项为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(x+
x
4的展开式中的中间项的系数是
 

查看答案和解析>>

同步练习册答案