精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
log4x,x>0
cosx,x≤0
,则f(x)图象上关于原点O对称的点有
 
对.
考点:函数的图象
专题:函数的性质及应用
分析:f(x)图象上关于原点O对称的点的对数即是求log4x=-cos(-x)的解的个数,分别作出函数的图象,可得答案.
解答: 解:f(x)图象上关于原点O对称的点的对数
即求log4x=-cos(-x)的解的个数
即函数y=log4x和y=cosx的交点个数,
作出两者的图形,如图所示
可以发现两者有3个交点,
故答案为:3
点评:本题主要考查了函数的图象的问题,关键是函数图象的画法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两位同学学完导数知识后,对三次多项式函数f(x)=ax3+bx2+cx+d(x∈R,a≠0,a、b、c、d∈R)进行了研究.在一次交流时.提出了如下结果.
①若a>0时,则f(x)存在单调递增区间;若a<0时,则f(x)存在单调递减区间;
②f(x)的零点个数可能是1个,或2个,或3个;
③有极值的充要条件是b2≥3ac;
④图象上总存在不同的两点A,B,在A,B两点处的切线互相平行.
请你给予评价:
(1)上述结果是正确的
 
(填上所有正确的序号);
(2)上述结果若有错误的,填上错误的序号并更正:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+2,且f′(1)=2,则a的值为=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列-9,a1,a2,a3,-1五个成等差数列,-9,b1,b2,b3,-1五个成等比数列,则
a1-a3
b2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数Z1=3+i,Z2=1-i,则Z=Z1•Z2的复平面内的对应点位于第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x+1,x≤1
2x-1,x>1
,则f(3)的值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某位高三学生要参加高校自主招生考试,现从6所高校中选择3所报考,由于其中两所学校的考试时间相同,因此该同学不能同时报考这两所学校,则该同学不同报名方法种数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品每三年降价
1
4
,目前价格是640,则9年后此产品的价格是(  )
A、270B、240
C、210D、360

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上的动点,F1,F2分别是其左、右焦点,O为坐标原点,若
|PF1|+|PF2|
|OP|
的最大值是
6
,则此双曲线的离心率是(  )
A、
3
B、
6
2
C、
3
2
D、2

查看答案和解析>>

同步练习册答案