精英家教网 > 高中数学 > 题目详情
观察下列等式:

照此规律, 第n个等式可为           

试题分析:本题考查利用归纳推理的知识来解决问题,应该仔细发现题目所给前三个式子的规律,然后加以总结,但要保证结论正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

下面几种推理是合情推理的是     。(填序号)
①由圆的性质类比出球的性质;
②由直角三角形、等腰三角形、等边三角形的内角和是1800,归纳得出所有三角形的内角和为1800
③小王某次考试成绩是100分,由此推出全班同学的成绩都是100分;
④三角形的内角和是1800,四边形内角和是3600,五边形的内角和是5400,由此得凸n边形的内角和是.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面中,△ABC的角C的内角平分线CE分△ABC面积所成的比.将这个结论类比到空间:在三棱锥ABCD中,平面DEC平分二面角ACDB且与AB交于E,则类比的结论为=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一个方程有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

学习合情推理后,甲、乙两位同学各举了一个例子,
甲:由“若三角形周长为l,面积为S,则其内切圆半径r”类比可得“若三棱锥表面积为S,体积为V,则其内切球半径r”;
乙:由“若直角三角形两直角边长分别为ab,则其外接圆半径r”类比可得“若三棱锥三条侧棱两两垂直,侧棱长分别为abc,则其外接球半径r”.这两位同学类比得出的结论(  )
A.两人都对B.甲错、乙对
C.甲对、乙错D.两人都错

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正整数数列中,由1开始依次按如下规则取它的项:第一次取1,第二次取2个连续偶数2、4;第三次取3个连续奇数5、7、9;第四次取4个连续偶数10、12、14、16;第五次取5个连续奇数17、19、21、23、25.按此规则一直取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个子数列中,由1开始的第15个数是       ,第2014个数是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在计算“1×2+2×3+...+n(n+1)”时,某同学学到了如下一种方法:
先改写第k项:k(k+1)=
由此得1×2-.
.
.............
.
相加,得1×2+2×3+...+n(n+1).
类比上述方法,请你计算“1×2×3×4+2×3×4×+....+”,
其结果是_________________.(结果写出关于一次因式的积的形式)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

请阅读下列材料:若两个正实数a1,a2满足,那么.
证明:构造函数,因为对一切实数x,恒有,所以 ,从而得,所以.
根据上述证明方法,若n个正实数满足时,你能得到的结论为          .(不必证明)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

小明在做一道数学题目时发现:若复数(其中), 则 ,根据上面的结论,可以提出猜想: z1·z2·z3=                  

查看答案和解析>>

同步练习册答案