分析 由x≠0,可得2x2>0,$\frac{1}{{x}^{2}}$>0,运用二元均值不等式:a+b≥2$\sqrt{ab}$(a,b>0,a=b取得等号),即可得证.
解答 证明:由x≠0,可得2x2>0,$\frac{1}{{x}^{2}}$>0,
即有2x2+$\frac{1}{{x}^{2}}$≥2$\sqrt{2{x}^{2}•\frac{1}{{x}^{2}}}$=2$\sqrt{2}$,
当且仅当2x2=$\frac{1}{{x}^{2}}$,即x=±$\root{4}{\frac{1}{2}}$时,取得等号.
则2x2+$\frac{1}{{x}^{2}}$$≥2\sqrt{2}$.
点评 本题考查不等式的证明,注意运用均值不等式,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | y2=8x或y2=-8x | B. | x2=8y或x=-8y | C. | x2=4y或x2=-4y | D. | y2=4x或y2=-4x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (2,3) | C. | (1,2) | D. | ($\sqrt{5}$,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{4}{15}$ | C. | $\frac{2}{15}$ | D. | $\frac{1}{15}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com