分析 (1)由PA⊥平面ABCD得PA⊥CD,由勾股定理的逆定理得AC⊥BC,故CD⊥平面PAC.
(2)设AN=x,求出三棱锥A-MNC和四棱锥P-ABCD的体积,利用体积比得出x,从而求出$\frac{AN}{NB}$的值.
解答 (1)证明:∵AB=AC=2,BC=2$\sqrt{2}$,
∴AB2+AC2=BC2,∴AB⊥AC.
∵底面ABCD是平行四边形,
∴AB∥CD,∴AC⊥CD.
∵PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD,又PA∩AC=A,PA?平面PAC,AC?平面PAC,
∴CD⊥平面PAC.
(2)解:设AN=x,则S△ANC=$\frac{1}{2}AN•AC=x$,
∵M是PD的中点,∴M到平面ABCD的距离h=$\frac{1}{2}PA$=1.
∴V=A-MNC=VM-ANC=$\frac{1}{3}{S}_{△ANC}•h$=$\frac{x}{3}$.
∵VP-ABCD=$\frac{1}{3}{S}_{四边形ABCD}•PA$=$\frac{1}{3}×2×2×2$=$\frac{8}{3}$.
∵三棱锥A-MNC的体积等于四棱锥P-ABCD体积的$\frac{1}{12}$,
∴$\frac{x}{3}=\frac{8}{3}×\frac{1}{12}$,∴x=$\frac{2}{3}$.即AN=$\frac{2}{3}$.
∴BN=AB-AN=$\frac{4}{3}$.
∴$\frac{AN}{NB}=\frac{1}{2}$.
点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3x+4y+15=0 | B. | x=-3或3x+4y+15=0 | ||
| C. | x=-3或y=-$\frac{3}{2}$ | D. | x=-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 假设a,b,c都不为0 | B. | 假设a,b,c中至少有两个为0 | ||
| C. | 假设a,b,c中至多有两个为0 | D. | 假设a,b,c中至多有一个为0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com