分析 由题意判断得到A为最大角,利用余弦定理表示出cosA,将表示出的b与c,以及cosA的值代入即可求出a的值,从而可求b,c的值,即可解得三角形的周长.
解答 解:在△ABC中,由题意得到A为最大角,即A=120°,b=a-4,c=a-8,
由余弦定理得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{(a-4)^{2}+(a-8)^{2}-{a}^{2}}{2(a-4)(a-8)}$=-$\frac{1}{2}$,
解得:a=4(不合题意,舍去)或a=14,
则可得:a=14,b=10,c=6.
所以:△ABC的周长l=a+b+c=14+10+6=30.
故答案为:30.
点评 此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{25}$ | B. | $-\frac{4}{25}$ | C. | $\frac{7}{25}$ | D. | $-\frac{7}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1≤a≤2 | B. | a<1或a≥2 | C. | 1<a≤2 | D. | a<1或a>2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com