精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\frac{2x}{{x}^{2}+a}$(a>0)在x=-1处的切线垂直于y轴.
(1)求实数a的值;
(2)求过点M(1,f(1))且与曲线y=f(x)相切的切点P的坐标.

分析 (1)求函数的导数,利用f′(-1)=0,解方程即可.
(2)设出切点坐标,求出切线方程,进行求解即可得到结论.

解答 解:(1)∵f(x)=$\frac{2x}{{x}^{2}+a}$,
∴f′(x)=$\frac{2({x}^{2}+a)-2x•2x}{({x}^{2}+a)^{2}}$=$\frac{-2{x}^{2}+2a}{({x}^{2}+a)^{2}}$,
∵数f(x)=$\frac{2x}{{x}^{2}+a}$(a>0)在x=-1处的切线垂直于y轴,
∴f′(-1)=0,
即f′(-1)=$\frac{-2+2a}{(1+a)^{2}}$=0,即2a-2=0,得a=1.
(2)∵a=1,∴f(x)=$\frac{2x}{{x}^{2}+1}$,f′(x)=$\frac{-2{x}^{2}+2}{({x}^{2}+1)^{2}}$,
∵f(1)=1,∴M(1,1),
设切点P(m,$\frac{2m}{{m}^{2}+1}$),则切线斜率k=f′(m)=$\frac{2-2{m}^{2}}{({m}^{2}+1)^{2}}$,
则切线方程为y-$\frac{2m}{{m}^{2}+1}$=$\frac{2-2{m}^{2}}{({m}^{2}+1)^{2}}$(x-m),
∵切线过M(1,1),
∴1-$\frac{2m}{{m}^{2}+1}$=$\frac{2-2{m}^{2}}{({m}^{2}+1)^{2}}$•(1-m),
即$\frac{(m-1)^{2}}{{m}^{2}+1}$=$\frac{2(1-m)^{2}(1+m)}{({m}^{2}+1)^{2}}$,
即(m2+1)(m-1)2=2(1+m)(m-1)2
若m=1,满足条件,
当m≠1时,方程等价为m2+1=2(1+m),即m2-2m-1=0,
得m=1±$\sqrt{2}$,
当m=1时,P(1,1),
当m=1+$\sqrt{2}$,P(1+$\sqrt{2}$,$\frac{\sqrt{2}}{2}$),
当m=1-$\sqrt{2}$,P(1-$\sqrt{2}$,-$\frac{\sqrt{2}}{2}$).

点评 本题主要考查导数的几何意义的应用,求函数的导数,求出函数的切线方程是解决本题的关键.考查学生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,已知二面角α-BC-β的大小为θ(0≤θ≤$\frac{π}{2}$).在面α内有△ABC,它在面β内的射影为△A′BC.它们的面积分别为S,S′,求证:cosθ=$\frac{S′}{S}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.使|n2-5n+5|=1不成立的最小的非零自然数是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中既是奇函数,又是区间(-1,0)上是减函数的(  )
A.y=sinxB.y=-|x-1|C.y=ex-e-xD.y=ln$\frac{1-x}{1+x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.从1,2,3…20这20个数中选出2个数,使这2个数的和为偶数,共有90种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若实数a、b、c满足b+c=5a2-8a+11,b-c=a2-6a+9,试比较a、b、c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,a-b=4,a+c=2b,且最大角为120°,则△ABC的周长是30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知1+$\sqrt{3}$tan10°=$\frac{1}{cosθ}$,且θ为锐角,则θ=40°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设(ax+3)(x2-b)≤0对任意x∈[0,+∞)恒成立,其中a、b是整数,则a+b的取值的集合为{8,-2}.

查看答案和解析>>

同步练习册答案