精英家教网 > 高中数学 > 题目详情
20.已知二项式${(x+\frac{2}{x})^n}$的展开式中各项二项式系数和是16,则n=4,展开式中的常数项是24.

分析 由题意知:得2n=16,即可求出n;利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r的值,将r的值代入通项求出常数项.

解答 解:由题意知:得2n=16,∴n=4;
展开式的通项为Tr+1=${C}_{4}^{r}•{2}^{r}•{x}^{4-2r}$,令4-2r=0得r=2
∴展开式中的常数项为24
故答案为:4,24

点评 本题考查二项式系数和问题、考查利用二项展开式的通项公式解决二项展开式的特定项问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图所示的程序框图,运行相应的程序,若输出的结果是4,则常数a的值为(  )
A.4B.2C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式2-lnx≥0解集是(0,e2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知命题p:?x∈R,x2+ax+a<0.若¬p是真命题,则实数a的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等比数列{an}中,a3+a4=4,a2=2,则公比q等于(  )
A.-2B.1或-2C.1D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合U={1,2,3,4,5,6},A={x∈N|1≤x≤3},则∁UA=(  )
A.UB.{1,2,3}C.{4,5,6}D.{1,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系xOy中,点A(-1,0),$B(\;0\;,\;\sqrt{3}\;)$,C(cosx,sinx),则$\overrightarrow{AB}$=$(1,\sqrt{3})$;若$\overrightarrow{AB}$∥$\overrightarrow{OC}$,则tanx=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,平面PBA⊥平面ABCD,∠DAB=90°,PB=AB,BF⊥PA,点E在线段AD上移动.
(Ⅰ)当点E为AD的中点时,求证:EF∥平面PBD;
(Ⅱ)求证:无论点E在线段AD的何处,总有PE⊥BF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,A(0,-1),B(7,0),C(-1,4),G为△ABC的重心,D为BC的三等分点,且|BD|=$\frac{1}{2}$|DC|,求直线GD的点斜式方程.

查看答案和解析>>

同步练习册答案