精英家教网 > 高中数学 > 题目详情
从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
10
i=1
xi=80,
10
i=1
yi=20,
10
i=1
xiyi=184,
10
i=1
xi2=720.则家庭的月储蓄y对月收入x的线性回归方程为
 

(附:线性回归方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
y
n
i=1
xi2-n
x
2
,a=
.
y
-b
.
x
,其中
.
x
.
y
为样本平均值,线性回归方程也可写为
.
y
=
.
b
x+
.
a
.)
考点:线性回归方程
专题:计算题,概率与统计
分析:由题意可知n,
.
x
.
y
,进而代入可得b、a值,可得方程.
解答: 解:由题意,n=10,
.
x
=
1
n
10
i=1
xi=8,
.
y
=
1
n
10
i=1
yi=2,
∴b=
184-10×8×2
720-10×82
=0.3,a=2-0.3×8=-0.4,
∴y=0.3x-0.4,
故答案为:y=0.3x-0.4.
点评:本题考查线性回归方程的求解及应用,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)上的动点,F1、F2是双曲线的左右焦点,M是∠F1PF2的平分线上一点,且F2M⊥MP某同学用以下方法研究|OM|:延长FM2交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得|OM|=
1
2
|NF1
|,…,|OM|=a.类似地:P是椭圆
x2
a2
+
y2
b2
=1(a>b>0,b2+c2=a2,xy≠0)
上的动点,F1、F2是椭圆的左右焦点,M是∠F1PF2的平分线上一点,且F2M⊥MP,则|OM|的取值范围是(  )
A、(0,a)
B、(0,b)
C、(b,a)
D、(0,c)

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,1]内任取两个实数,则这两个实数的和大于
1
3
的概率为(  )
A、
2
9
B、
7
9
C、
1
18
D、
17
18

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有2Sn=2pan2+pan-p(p∈R).
(1)求常数P的值;
(2)求数列{an}的通项公式;
(3)记bn=
4Sn
n+3
2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d不为零,其前n项和为Sn,若S5=70,且a2,a7,a22成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{
2
Sn
}的前n项和为Tn,求证:Tn
3
4
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x-(x+1)ln(x+1)(x>-1)
(1)求f(x)的最大值;
(2)证明:当n>m>1时,(1+n)m<(1+m)n
(3)证明:当n>2014,且x1,x2,x3,…,xn∈R+,x1+x2+x3+…+xn=1时,(
x12
1+x1
+
x22
1+x2
+
x32
1+x3
+…+
xn2
1+xn
)
1
n
>(
1
2015
)
1
2014

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和记为Sn,对任意正整数n满足3an-2=Sn
(1)求数列{an}的通项公式;
(2)设bn=2n,记数列{bn}的前n项和为Tn,若不等式Tn≤λ•an对任意正整数n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知存在x∈(0,
1
2
)使不等式(2-a)(x-1)-x2<0成立,则a的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x||x|<1},B={x|log2x≤0},则A∩B=(  )
A、{x|-1<x<1}
B、{x|0<x<1}
C、{x|-1<x≤1}
D、{x|0<x≤1}

查看答案和解析>>

同步练习册答案