精英家教网 > 高中数学 > 题目详情
设函数f(x)=x-(x+1)ln(x+1)(x>-1)
(1)求f(x)的最大值;
(2)证明:当n>m>1时,(1+n)m<(1+m)n
(3)证明:当n>2014,且x1,x2,x3,…,xn∈R+,x1+x2+x3+…+xn=1时,(
x12
1+x1
+
x22
1+x2
+
x32
1+x3
+…+
xn2
1+xn
)
1
n
>(
1
2015
)
1
2014
考点:二维形式的柯西不等式,函数的最值及其几何意义,利用导数研究函数的单调性
专题:综合题,导数的综合应用,推理和证明
分析:(1)求导数,确定函数的单调性,即可求f(x)的最大值;
(2)令g(x)=
ln(1+x)
x
,x>0
,确定函数g(x)在(0,+∞)上是减函数,即可证明结论;
(3)利用柯西不等式,结合(1+n)2014<(1+2014)n,得(1+n)
1
n
<2015
1
2014
,即可证明结论.
解答: 解:(1)由题意得f′(x)=1-1-ln(1+x)=-ln(1+x)(x>-1),…(2分)
当-1<x<0,即f′(x)>0时,f(x)单调递增;
当x>0,即f′(x)<0时,f(x)单调递减;
∴f(x)的最大值是f(0)=0.…(4分)
(2)令g(x)=
ln(1+x)
x
,x>0
,则g′(x)=
x-(1+x)ln(1+x)
x2(1+x)

由(1)知f(x)=x-(x+1)ln(x+1)在(0,+∞)上是减函数,且f(0)=0,
∴g′(x)<0在在(0,+∞)恒成立,从而得到函数g(x)在(0,+∞)上是减函数,
又当n>m>0时,∴g(n)<g(m),得
ln(1+n)
n
ln(1+m)
m

∴mln(n+1)<nln(m+1),即:(1+n)m<(1+m)n.…(8分)
(3)∵x1x2x3,…,xnR+,x1+x2+x3+…+xn=1由柯西不等式知:(
x12
1+x1
+
x22
1+x2
+
x32
1+x3
+…+
xn2
1+xn
)•[(1+x1)+(1+x2)+…+(1+xn)]≥(x1+x2+…+xn)2

x12
1+x1
+
x22
1+x2
+
x32
1+x3
+…+
xn2
1+xn
1
n+1

(
x12
1+x1
+
x22
1+x2
+
x32
1+x3
+…+
xn2
1+xn
)
1
n
≥(
1
n+1
)
1
n
…(11分)
∵n>2014,由(2)知:(1+n)2014<(1+2014)n,得(1+n)
1
n
<2015
1
2014

(
1
1+n
)
1
n
>(
1
2015
)
1
2014
,∴(
x12
1+x1
+
x22
1+x2
+
x32
1+x3
+…+
xn2
1+xn
)
1
n
>(
1
2015
)
1
2014
.…(14分)
点评:本题考查导数知识的综合运用,考查函数的单调性,考查柯西不等式,考查学生分析解决问题的能力,难度大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在矩形ABCD中,|
AB
|=
3
,|
BC
|=1,则|
BA
-
BC
|=(  )
A、2
B、3
C、2
3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,且Sn=2an-1,设bn=2(log2an+1),n∈N*
(1)求数列{an}的通项公式;
(2)求数列{bn•an}的前n项和Tn
(3)证明:对于任意n∈N+,不等式
b1+1
b1
b2+1
b2
•…•
bn+1
bn
n+1
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为1,在正方体内随机取点M,求使四棱锥M-ABCD的体积小于
1
6
的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
10
i=1
xi=80,
10
i=1
yi=20,
10
i=1
xiyi=184,
10
i=1
xi2=720.则家庭的月储蓄y对月收入x的线性回归方程为
 

(附:线性回归方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
y
n
i=1
xi2-n
x
2
,a=
.
y
-b
.
x
,其中
.
x
.
y
为样本平均值,线性回归方程也可写为
.
y
=
.
b
x+
.
a
.)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,a5=11,且a4+a8=26.
(Ⅰ)求数列{an}的通项;
(Ⅱ)设bn=2an-an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

关于直线a、b与平面α、β,有下列四个命题:其中真命题的序号是(  )
①若a∥α,b∥β且α∥β,则a∥b     
②若a⊥α,b⊥β且α⊥β,则a⊥b
③若a⊥α,b∥β且α∥β,则a⊥b     
④若a∥α,b⊥β且α⊥β,则a∥b.
A、①②B、②③C、③④D、④①

查看答案和解析>>

科目:高中数学 来源: 题型:

某市出租车收费标准是:3km起价10元(乘一次的最少车费);行驶3km后,每千米车费1.6元,行驶10km后,每千米车费2.4元
(1)写出车费y与里程x的函数关系式
(2)一顾客行程30km,为了省钱,他设计了三种乘车方案:①乘一辆出租车到达目的地;②分两段乘车,乘一辆车行15km,换另一辆车再行15km;③分三段乘车,每行10km换一次车,问哪种方案最省钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足|DM|=m|DA|,当点A在圆上运动时,记点M的轨迹为曲线C,求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标.

查看答案和解析>>

同步练习册答案