精英家教网 > 高中数学 > 题目详情
在矩形ABCD中,|
AB
|=
3
,|
BC
|=1,则|
BA
-
BC
|=(  )
A、2
B、3
C、2
3
D、4
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用向量的三角形法则以及勾股定理,将所求转化为求矩形的对角线长度.
解答: 解:由已知四边形ABCD是矩形,所以|
BA
-
BC
|=|
CA
|=
|
AB
|2+|
BC
|2
=2;
故选A.
点评:本题考查了向量的减法运算以及勾股定理的运用;属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且Sn=2an-p,其中p是不为零的常数.
(1)证明:数列{an}是等比数列;
(2)当p=2时,数列{an}满足b1=2,bn+1=bn+an(n∈N+),求数列{nbn}的前项n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

下列式中正确的个数是(  )
(1)loga(b2-c2)=2logab-2loga
(2)(loga3)2=2loga3
(3)
lg15
lg3
=lg5       
(4)logax2=2loga|x|
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,第(1)个多边形是由正三角形“扩展”而来,第(2)个多边形是由正四边形“扩展”而来,…如此类推.设由正n边形“扩展”而来的多边形的边数为an

则数列{
1
an
}的前n项之和等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)上的动点,F1、F2是双曲线的左右焦点,M是∠F1PF2的平分线上一点,且F2M⊥MP某同学用以下方法研究|OM|:延长FM2交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得|OM|=
1
2
|NF1
|,…,|OM|=a.类似地:P是椭圆
x2
a2
+
y2
b2
=1(a>b>0,b2+c2=a2,xy≠0)
上的动点,F1、F2是椭圆的左右焦点,M是∠F1PF2的平分线上一点,且F2M⊥MP,则|OM|的取值范围是(  )
A、(0,a)
B、(0,b)
C、(b,a)
D、(0,c)

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正数,它的前n项的和为Sn,点(an,Sn)在函数y=
1
8
x2+
1
2
x+
1
2
的图象上;数列{bn}满足b1=a1,bn+1•(an+1-an)=bn,其中n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=
an
bn
,求数列{cn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一个数列{bn}的前项n和为Sn,并且对于任意的n∈N*都有Sn-2bn+3n=0
(1)设an=bn+3,求证:数列{an}是一个等比数列,并求出{bn}的通项公式.
(2)求数列{nbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l过点P(1,1)与双曲线x2-
y2
4
=1只有一个公共点,则这样的直线有(  )
A、4条B、3条C、2条D、1条

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x-(x+1)ln(x+1)(x>-1)
(1)求f(x)的最大值;
(2)证明:当n>m>1时,(1+n)m<(1+m)n
(3)证明:当n>2014,且x1,x2,x3,…,xn∈R+,x1+x2+x3+…+xn=1时,(
x12
1+x1
+
x22
1+x2
+
x32
1+x3
+…+
xn2
1+xn
)
1
n
>(
1
2015
)
1
2014

查看答案和解析>>

同步练习册答案