精英家教网 > 高中数学 > 题目详情
6.对于R上可导的函数f(x),若满足(x-1)f'(x)<0,则必有(  )
A.f(0)+f(2)<2f(1)B.f(0)+f(2)=2f(1)C.f(0)<f(1)<f(2)D.f(0)+f(2)>2f(1)

分析 借助导数知识,根据(x-1)f′(x)<0,判断函数的单调性,再利用单调性,比较函数值的大小即可.

解答 解:∵对于R上可导的任意函数f(x),(x-1)f′(x)>0
∴有$\left\{\begin{array}{l}{x-1>0}\\{f′(x)<0}\end{array}\right.$ 或 $\left\{\begin{array}{l}{x-1<0}\\{f′(x)>0}\end{array}\right.$,
即当x∈(1,+∞)时,f(x)为减函数,
当x∈(-∞,1)时,f(x)为增函数
∴f(0)<f(1),f(2)<f(1)
∴f(0)+f(2)<2f(1)
故选:A.

点评 本题考查了利用导数判断抽象函数单调性,以及利用函数的单调性比较函数值的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}和等比数列{bn},其中{an}的公差不为0.设Sn是数列{an}的前n项和.若a1,a2,a5是数列{bn}的前3项,且S4=16.
(1)求数列{an}和{bn}的通项公式;
(2)若数列{$\frac{4{S}_{n}-1}{{a}_{n}+t}$}为等差数列,求实数t;
(3)构造数列a1,b1,a2,b1,b2,a3,b1,b2,b3,…,ak,b1,b2,…,bk,…,若该数列前n项和Tn=1821,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.命题:(1)三角形、梯形一定是平面图形;
(2)若四边形的两条对角线相交于一点,则该四边形是平面图形;
(3)三条平行线最多可确定三个平面;
(4)平面α和β相交,它们只有有限个公共点;
(5)若A,B,C,D四个点既在平面α内,又在平面β内,则这两平面重合.
其中正确命题的序号是(1),(2),(3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知角A,B为锐角,且cosA=$\frac{3}{5}$,cosB=$\frac{5}{13}$,求sin(A+B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),当k为整数时,向量$\overrightarrow{m}$=k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{n}$=$\overrightarrow{a}$+k$\overrightarrow{b}$ 的夹角能否为60°?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知(1-$\frac{x}{2}$)2n=a0+a1x+a2x2+…+a2nx2n(x∈N*
(1)当n=5时,求系数ai的最大值和最小值;
(2)若a3=-$\frac{1}{2}$,求n的值;
(3)求证:an<$\frac{2^n}{{\sqrt{2n+1}}}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{4})}^{x},x<1}\\{{log}_{\frac{1}{2}}x,x≥1}\end{array}\right.$,则f(f(-1))=(  )
A.2B.-2C.$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区--龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)
年龄频数频率
[0,10)100.155
[10,20)
[20,30)250.251213
[30,40)200.21010
[40,50)100.164
[50,60)100.137
[60,70)50.0514
[70,80)30.0312
[80,90)20.0202
合计1001.004555
(1)完成表格一中的空位①-④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
 50岁以上50岁以下合计
男生   
女生   
合计   
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某中学为了解高一年级学生身体发育情况,对全校1400名高一年级学生按性别进行分层抽样检查,测得一组样本的身高(单位:cm)频数分布表如表1、表2.
表1:男生身高频数分布表
 身高(cm)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)
 频数2511453
表2:女生身高频数分布表
 身高(cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)
 频数28151221
(I)估计该校高一女生的人数:
(II)估计该校学生身高在[165,180)的概率;
(III)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X表示身高在[165,180)的学生人数,求X的分布列及数学期望EX.

查看答案和解析>>

同步练习册答案