精英家教网 > 高中数学 > 题目详情
求值
(
3
tan12°-3)
1
sin12°
4cos212°-2
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:原式利用同角三角函数间基本关系化简,计算即可得到结果.
解答: 解:原式=
(
3
tan12°-3)
(4cos212°-2)sin12°
=
3
(sin12°-
3
cos12°)
2sin12°cos12°cos24°
=
2
3
sin(12°-60°)
1
2
sin48°
=-4
3
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
tan2x
tanx
的定义域为(  )
A、{x|x∈R且x≠
4
,k∈Z}
B、{x|x∈R且x≠kπ+
π
2
,k∈Z}
C、{x|x∈R且x≠kπ+
π
4
,k∈Z}
D、{x|x∈R且x≠kπ-
4
,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=2x+1与曲线y=x3+ax+b相切于点A(1,3),则a=(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线ρsinθ=m与圆ρ=4cosθ相切于极轴上方,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
sinωx•cos(ωx+
π
4
)+2sin2ωx+
1
2
,直线y=1-
2
2
与f(x)的图象交点之间的最短距离为π.
(Ⅰ)求f(x)的解析式及其图象的对称中心;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,若∠A是锐角,且f(
A
2
+
π
8
)=
3
2
,c=4,a+b=4
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆柱有一个内接长方体AC1,长方体对角线长是10
2
 cm,圆柱的侧面展开平面图为矩形,此矩形的面积是100π cm2,求圆柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|(x+2)(x+1)(2x-1)>0},B={x|x2+ax+b≤2},且A∪B={x|x>-2},A∩B={x|
1
2
<x≤3},求常数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的直径,BC是圆O的切线,切点为B,OC平行于弦AD,若OB=3,OC=5,则CD=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,g(x)=lnx,
(1)求证:f(x)≥x+1;
(2)设x0>1,求证:存在唯一的x0使得g(x)图象在点A(x0,g(x0))处的切线l与y=f(x)图象也相切;
(3)求证:对任意给定的正数a,总存在正数x,使得|
f(x)-1
x
-1|<a成立.

查看答案和解析>>

同步练习册答案