精英家教网 > 高中数学 > 题目详情
函数y=|x|的图象与直线y=a的交点个数(  )
A、至少有一个
B、至多有两个
C、必有两个
D、有一个或两个
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:通过函数的值域,直接判断选项即可.
解答: 解:因为y=|x|是偶函数,并且y=|x|≥0,
y=a∈R,
∴函数y=|x|的图象与直线y=a的交点个数,至多有两个.
故选:B.
点评:本题考查函数的图形的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-6x2+15,记y=f(x)的图象为曲线C.
(Ⅰ)若以曲线C上的任意一点P(x0,y0)为切点作切线,求切线的斜率的最小值;
(Ⅱ)以曲线C上的两个不同动点A、B为切点分别作C的切线l1、l2,若l1∥l2,若l1∥l2恒成立,问动直线AB是否恒过定点M?若存在,求出M的坐标,不存在说明理由;
(Ⅲ)在(Ⅱ)的条件下,当直线AB的斜率为-2时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x2,x∈[-1,2]
x-3,x∈(2,5]

(1)在图中给定的直角坐标系内画出f(x)的图象;
(2)写出f(x)的单调区间;
(3)解不等式f(x)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,
a
b
=
1
2
,(
a
-
b
2=
1
2
,则|
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,该几何体的表面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则此几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设0<x<2,求函数y=
x(4-2x)
的最大值;
(2)求
4
a-2
+a的取值范围;
(2)已知x>0,y>0,且x+y=1.求
3
x
+
4
y
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知是夹角为60°的两个单位向量,若
e1
e2
=60°,
a
=
e1
+
e2
b
=-4
e1
+2
e2
,则
a
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某家具生产厂需要在一个半径为1的圆形木料中依照图纸方式切割出如图十字图形,其中∠AEF=θ(θ为变量),AB=HG=x,AF=y.
(1)用θ表示x,y,并求出θ的取值范围.
(2)将阴影部分的面积S表示为θ的函数,并求出S的最大值及此时θ的值.

查看答案和解析>>

同步练习册答案