精英家教网 > 高中数学 > 题目详情
7.复数z1、z2满足|z1|=|z2|=1,z1-z2=$\frac{2-4i}{2+i}$,则z1•z2=(  )
A.1B.-1C.iD.-i

分析 z1-z2=$\frac{2-4i}{2+i}$=-2i,由|z1|=|z2|=1,设z1=cosα+isinα,z2=cosβ+isinβ,可得cosα=cosβ,sinα-sinβ=-2,即可得出.

解答 解:z1-z2=$\frac{2-4i}{2+i}$=$\frac{(2-4i)(2-i)}{(2+i)(2-i)}$=$\frac{-10i}{5}$=-2i,
由|z1|=|z2|=1,设z1=cosα+isinα,z2=cosβ+isinβ,
∴cosα=cosβ,sinα-sinβ=-2,
∴cosα=cosβ=0,sinα=-1,sinβ=1,
∴z1=-i,z2=i,
则z1•z2=-i•i=1.
故选:A.

点评 本题考查了复数的运算法则、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则它的外接球表面积为(  )
A.12πB.16πC.20πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x2-2x>0},B=[0,4],则A∩B=(  )
A.[-4,-1)B.(2,4]C.[-4,-1)∪(2,4]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(n>0,b>0)上一点C,过双曲线的中心作直线交双曲线于A,B两点,记直线AC,BC的斜率分别为k1,k2,当$\frac{2}{{k}_{1}{k}_{2}}$+ln|k1|+ln|k2|取最小值时,双曲线的离心率为(  )
A.2B.$\sqrt{5}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等差数列{an}中,Sn为其前n项和,S4=π(其中π为圆周率),a4=2a2,现从此数列的前30项中随机选取一个元素,则该元素的余弦值为负数的概率为(  )
A.$\frac{7}{15}$B.$\frac{1}{2}$C.$\frac{8}{15}$D.$\frac{7}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设离心率为$\frac{\sqrt{2}}{2}$的椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,点P是E上一点,PF1⊥PF2,△PF1F2内切圆的半径为$\sqrt{2}$-1.
(1)求E的方程;
(2)矩形ABCD的两顶点C、D在直线y=x+2,A、B在椭圆E上,若矩形ABCD的周长为$\frac{11\sqrt{2}}{3}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}满足an+1=an-an-1(n≥2),a1=m,a2=n,Sn为数列{an}的前n项和,则S2017的值为(  )
A.2017n-mB.n-2017mC.mD.n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面结论正确的是(  )
①一个数列的前三项是1,2,3,那么这个数列的通项公式是an=n(n∈N*).
②由平面三角形的性质推测空间四面体的性质,这是一种合情推理.
③在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.
④“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某同学在高三学年的五次阶段性考试中,数学成绩依次为110,114,121,119,126,则这组数据的方差是
30.8.

查看答案和解析>>

同步练习册答案