【题目】近年来,在新高考改革中,打破文理分科的“
”模式初露端倪,其中语、数、外三门课为必考科目,剩下三门为选考科目选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分,假定
省规定:选考科目按考生成绩从高到低排列,按照占总体
、
、
、
分别赋分
分、
分、
分、
分,为了让学生们体验“赋分制”计算成绩的方法,
省某高中高一(
)班(共
人)举行了以此摸底考试(选考科目全考,单料全班排名),知这次摸底考试中的物理成绩(满分
分)频率分布直方图,化学成绩(满分
分)茎叶图如图所示,小明同学在这次考试中物理
分,化学
多分.
![]()
(1)采用赋分制后,求小明物理成绩的最后得分;
(2)若小明的化学成绩最后得分为
分,求小明的原始成绩的可能值;
(3)若小明必选物理,其他两科从化学、生物、历史、地理、政治五科中任选,求小明此次考试选考科目包括化学的概率.
【答案】(1)
分;(2)
;(3)
.
【解析】
(1)根据物理
分判断所处的百分比,根据百分比确定分数;(2)先排除赋分
分的分数,然后利用百分比计算赋分
分的人数,结合数据,给出可能的取值;(3)采用列举法以及古典概型的概率计算公式来求解.
(1)∵
,
,
∴此次考试物理成绩落在
,
内的频率依次为
,
,频率之和为
,且小明的物理成绩为
分,大于
分,处于前
,
∴小明物理成绩的最后得分为
分.
(2)因为
名学生中,赋分
分的有
人,这六人成绩分别为
,
,
,
,
,
;赋分
分的有
人,其中包含
多分的共
人,
多分的有
人,分数分别为
,
,
,
;因为小明的化学成绩最后得分为
分,且小明化学
多分,所以小明的原始成绩的可能值为
,
,
,
.
(3)记物理、化学、生物、历史、地理、政治依次为
,
,
,
,
,
,小明的所有可能选法有
,
,
,
,
,
,
,
,
,
共10种,
其中包括化学的有
,
,
,
共4种,
∵若小明必选物理,其他两科在剩下的五科中任选,所选科目包括化学的概率为:
.
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)如图,在多面体
中,底面
是边长为
的的菱形,
,四边形
是矩形,平面
平面
,
,
和
分别是
和
的中点.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是实数,函数
.
(Ⅰ)讨论函数
的单调区间;
(Ⅱ)设定义在
上的函数
在点
处的切线方程为
,当
时,若
在
内恒成立,则称点
为函数
的“平衡点”.当
时,试问函数
是否存在“平衡点”?若存在,请求出“平衡点”的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知四边形BCDE为直角梯形,
,
,且
,A为BE的中点
将
沿AD折到
位置
如图
,连结PC,PB构成一个四棱锥
.
![]()
Ⅰ
求证
;
Ⅱ
若
平面ABCD.
求二面角
的大小;
在棱PC上存在点M,满足
,使得直线AM与平面PBC所成的角为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的参数方程为
(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线
:
.
(Ⅰ)求曲线
的普通方程和
的直角坐标方程;
(Ⅱ)若
与
相交于
两点,设点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:x﹣y+3=0和l2:x+y+1=0的交点为A,过A且与x轴和y轴都相切的圆的方程为_____,动点B,C分别在l1和l2上,且|BC|=2,则过A,B,C三点的动圆扫过的区域的面积为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com