精英家教网 > 高中数学 > 题目详情
7.设D,E,F分别△ABC的三边AB,BC,CA的中点,则$\overrightarrow{EA}+\overrightarrow{DC}$=(  )
A.$\overrightarrow{BC}$B.$3\overrightarrow{DF}$C.$\overrightarrow{BF}$D.$\frac{3}{2}\overrightarrow{BF}$

分析 利用向量平行四边形法则即可得出.

解答 解:∵$\overrightarrow{AE}$=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{CD}=\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$,
∴$\overrightarrow{EA}+\overrightarrow{DC}$=$-\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$-$\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$=$\frac{1}{2}$$(\overrightarrow{BC}+\overrightarrow{BA})$=$\overrightarrow{BF}$.
故选:C.

点评 本题考查了向量平行四边形法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在等差数列{an}中,Sn为其前n项和,若a3+a4+a8=25,则S9=(  )
A.60B.75C.90D.105

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在极坐标系下,点P是曲线ρ=2(0<θ<π)上的动点,A(2,0),线段AP的中点为Q,以极点为原点,极轴为x轴正半轴建立平面直角坐标系.
(1)求点Q的轨迹C的直角坐标方程;
(2)若轨迹C上的点M处的切线斜率的取值范围是[-$\sqrt{3}$,-$\frac{\sqrt{3}}{3}$],求点M横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{3}$=1(a>0)的一个焦点为F(-1,0),左、右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.
(1)当直线l的倾斜角为45°时,求线段CD的长;
(2)记△ABD与△ABC的面积分别为S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆(x+1)2+y2=2,则其圆心和半径分别为(  )
A.(1,0),2B.(-1,0),2C.(1,0),$\sqrt{2}$D.(-1,0),$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若2是函数f(x)=x3-ax(a∈R)的零点,则在(0,a)内任取一点x0,使lnx0<0的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正三棱锥的底面边长为2,高为1.
(1)求该正三棱锥的体积;
(2求该正三棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=f(x=2)是偶函数,且当x≠2时其导函数f′(x)满足(x-2)f′(x)>0,若2<a<3,则下列不等式式成立的是(  )
A.f(2a)<f(3)<f(log2aB.f(3)<f(log2a)<f(2aC.f(log2a)<f(3)<f(2aD.f(log2a)<f(2a)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知全集U=R,集M={x|x-3≥0},N={x|-1≤x<4}.
(1)求集合M∩N,M∪N;
(2)求集合∁UN,(∁UN)∩M.

查看答案和解析>>

同步练习册答案