精英家教网 > 高中数学 > 题目详情
18.在等差数列{an}中,Sn为其前n项和,若a3+a4+a8=25,则S9=(  )
A.60B.75C.90D.105

分析 利用等差数列通项公式得到${a}_{5}={a}_{1}+4d=\frac{25}{3}$,由此利用S9=$\frac{9}{2}({a}_{1}+{a}_{9})$=9a5,能求出结果.

解答 解:∵等差数列{an}中,Sn为其前n项和,a3+a4+a8=25,
∴3a1+12d=25,∴${a}_{5}={a}_{1}+4d=\frac{25}{3}$,
∴S9=$\frac{9}{2}({a}_{1}+{a}_{9})$=9a5=9×$\frac{25}{3}$=75.
故选:B.

点评 本题考查等差数列的前9项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,点$Q({b\;\;,\;\;\frac{a}{b}})$在椭圆上,O为坐标原点.
(1)求椭圆C的方程;
(2)已知点P,M,N为椭圆C上的三点,若四边形OPMN为平行四边形,证明四边形OPMN的面积S为定值,并求该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知tanθ=3,则cos($\frac{3π}{2}$+2θ)=(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xoy中,圆的参数方程为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ为参数),直线C1的参数方程为$\left\{\begin{array}{l}x=1+t\\ y=2+t\end{array}\right.$(t为参数).
(1)若直线C1与O圆相交于A,B,求弦长|AB|;
(2)以该直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C2的极坐标方程为$ρ=2cosθ+2\sqrt{3}sinθ$,圆O和圆C2的交点为P,Q,求弦PQ所在直线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=alnx-bx2(x>0)
(1)若函数f(x)的图象在点(1,-$\frac{1}{2}$)处的切线与x轴平行,探究函数f(x)在[$\frac{1}{e}$,e]上是否存在极小值;
(2)当a=1,b=0时,函数g(x)=f(x)-kx,k为常数,若函数g(x)有两个相异零点x1,x2,证明:x1,x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在正方形ABCD中,AB=AD=2,M,N分别是边BC,CD上的动点,当|$\overrightarrow{AM}$|•|$\overrightarrow{AN}$|=4时,则|$\overrightarrow{MN}$|的取值范围是$[\sqrt{2},2]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,用一边长为$\sqrt{2}$的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为$\frac{4π}{3}$的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{2}+1}{2}$C.$\frac{\sqrt{6}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若i为复数单位,复数z=$\frac{1-ai}{i}$在复平面内对应的点在直线x+2y+5=0上,则实数a的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设D,E,F分别△ABC的三边AB,BC,CA的中点,则$\overrightarrow{EA}+\overrightarrow{DC}$=(  )
A.$\overrightarrow{BC}$B.$3\overrightarrow{DF}$C.$\overrightarrow{BF}$D.$\frac{3}{2}\overrightarrow{BF}$

查看答案和解析>>

同步练习册答案