精英家教网 > 高中数学 > 题目详情
13.设函数f(x)=alnx-bx2(x>0)
(1)若函数f(x)的图象在点(1,-$\frac{1}{2}$)处的切线与x轴平行,探究函数f(x)在[$\frac{1}{e}$,e]上是否存在极小值;
(2)当a=1,b=0时,函数g(x)=f(x)-kx,k为常数,若函数g(x)有两个相异零点x1,x2,证明:x1,x2>e2

分析 (1)求出函数的导数,根据函数f(x)的图象在点(1,-$\frac{1}{2}$)处的切线与x轴平行,得到关于a,b的方程组,解出a,b的值,从而求出f(x)的解析式,求出函数的单调区间,判断函数的极值问题即可;
(2)求出$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$=k,问题转化为证明$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$>$\frac{2}{{x}_{1}{+x}_{2}}$,即证明ln$\frac{{x}_{1}}{{x}_{2}}$>$\frac{2{(x}_{1}{-x}_{2})}{{{x}_{1}+x}_{2}}$,设t=$\frac{{x}_{1}}{{x}_{2}}$,则t>1,设h(t)=lnt-$\frac{2(t-1)}{t+1}$,(t>1),根据函数的单调性证明即可.

解答 解:(1)f′(x)=$\frac{a}{x}$-2bx,
函数f(x)的图象在点(1,-$\frac{1}{2}$)处的切线与x轴平行,
∴$\left\{\begin{array}{l}{f′(1)=a-2b=0}\\{f(1)=-b=-\frac{1}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=\frac{1}{2}}\end{array}\right.$,
故f(x)=lnx-$\frac{1}{2}$x2,f′(x)=$\frac{1{-x}^{2}}{x}$,
令f′(x)>0,解得:$\frac{1}{e}$≤x<1,令f′(x)<0,解得:1<x≤e,
故f(x)在[$\frac{1}{e}$,1)递增,在(1,e]递减,
故f(x)在[$\frac{1}{e}$,e]商不存在极小值;
(2)a=1,b=0时,g(x)=f(x)-kx=lnx-kx,
由g(x)=0,得:lnx=kx,设x1>x2
∵lnx1-kx1=0,lnx2-kx2=0,
∴lnx1+lnx2=k(x1+x2),
lnx1-lnx2=k(x1-x2),
∴$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$=k,
要证明x1x2>e2,只需证明lnx1+lnx2>2,
即证明k(x1+x2)>2,即证明k>$\frac{2}{{x}_{1}{+x}_{2}}$,
即证明$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$>$\frac{2}{{x}_{1}{+x}_{2}}$,
即证明ln$\frac{{x}_{1}}{{x}_{2}}$>$\frac{2{(x}_{1}{-x}_{2})}{{{x}_{1}+x}_{2}}$,
设t=$\frac{{x}_{1}}{{x}_{2}}$,则t>1,
设h(t)=lnt-$\frac{2(t-1)}{t+1}$,(t>1),
则h′(t)=$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$>0,
∴函数h(t)在(1,+∞)递增,
∵h(1)=0,∴h(t)>h(1)=0,
∴lnt>$\frac{2(t-1)}{t+1}$,
∴x1x2>e2

点评 本题考查函数的单调性、最值问题,考查导数的应用以及分析理解与计算能力,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(sinx+cosx)2+cos2x-1.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2|x-1|-a,g(x)=-|x+m|(a,m∈R),若关于x的不等式g(x)>-1的整数解有且仅有一个值为-3.
(Ⅰ)求实数m的值;
(Ⅱ)若函数y=f(x)的图象恒在函数y=g(x)的图象上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1,F2,过F1作x轴的垂线交双曲线于A,B两点,若$∠A{F_2}B<\frac{π}{3}$,则双曲线离心率的取值范围是(  )
A.$({1,\sqrt{3}})$B.$({1,\sqrt{6}})$C.$({1,2\sqrt{3}})$D.$({\sqrt{3},3\sqrt{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.焦点为(0,6),且与双曲线$\frac{{x}^{2}}{2}$-y2=1有相同的渐近线的双曲线方程是(  )
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{24}$=1B.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{24}$=1C.$\frac{{y}^{2}}{24}$-$\frac{{x}^{2}}{12}$=1D.$\frac{{x}^{2}}{24}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等差数列{an}中,Sn为其前n项和,若a3+a4+a8=25,则S9=(  )
A.60B.75C.90D.105

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知,函数f(x)=|x+a|+|x-b|.
(Ⅰ)当a=1,b=2时,求不等式f(x)<4的解集;
(Ⅱ)若a,b∈R,且$\frac{1}{2a}$+$\frac{2}{b}$=1,求证:f(x)≥$\frac{9}{2}$;并求f(x)=$\frac{9}{2}$时,a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织(  )尺布.
A.$\frac{16}{31}$B.$\frac{16}{29}$C.$\frac{1}{2}$D.$\frac{8}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆(x+1)2+y2=2,则其圆心和半径分别为(  )
A.(1,0),2B.(-1,0),2C.(1,0),$\sqrt{2}$D.(-1,0),$\sqrt{2}$

查看答案和解析>>

同步练习册答案