精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=(sinx+cosx)2+cos2x-1.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

分析 (1)利用二倍角以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,
(2)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]上,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的取值最大和最小值.

解答 解:(1)由函数f(x)=(sinx+cosx)2+cos2x-1.
化简可得:f(x)=2sinxcosx+cos2x
=sin2x+cos2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴函数f(x)的最小正周期T=$\frac{2π}{2}=π$,
(2)由(1)可知,f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∵x∈[-$\frac{π}{4}$,$\frac{π}{4}$]上,
∴2x+$\frac{π}{4}$∈[$-\frac{3π}{4},\frac{π}{4}$],
∴sin(2x+$\frac{π}{4}$)∈[-1,$\frac{\sqrt{2}}{2}$].
故得函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值分别为1,$-\sqrt{2}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.2016年11月20日-22日在江西省南昌市举行了首届南昌国际马拉松赛事,赛后某机构用“10分制”调查了很多人(包括普通市民,运动员,政府官员,组织者,志愿者等)对此项赛事的满意度.现从调查人群中随机抽取16名,如图茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

(1)指出这组数据的众数和中位数;
(2)若满意度不低于9.5分,则称该被调查者的满意度为“极满意”.求从这16人中随机选取3人,至多有1人是“极满意”的概率;
(3)以这16人的样本数据来估计整个被调查群体的总体数据,若从该被调查群体(人数很多)任选3人,记ξ表示抽到“极满意”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+2y-8≤0\\ x≤3\end{array}\right.$,若使得ax-y取得最小值的可行解有无数个,则实数a的值为1或$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的(  )
A.充要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,点$Q({b\;\;,\;\;\frac{a}{b}})$在椭圆上,O为坐标原点.
(1)求椭圆C的方程;
(2)已知点P,M,N为椭圆C上的三点,若四边形OPMN为平行四边形,证明四边形OPMN的面积S为定值,并求该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设i为虚数单位,则i(i+1)=-1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.掷一枚均匀的硬币4次,出现正面向上的次数不少于反面向上的次数的概率为(  )
A.$\frac{5}{16}$B.$\frac{1}{2}$C.$\frac{5}{8}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=alnx-bx2(x>0)
(1)若函数f(x)的图象在点(1,-$\frac{1}{2}$)处的切线与x轴平行,探究函数f(x)在[$\frac{1}{e}$,e]上是否存在极小值;
(2)当a=1,b=0时,函数g(x)=f(x)-kx,k为常数,若函数g(x)有两个相异零点x1,x2,证明:x1,x2>e2

查看答案和解析>>

同步练习册答案