| A. | $({1,\sqrt{3}})$ | B. | $({1,\sqrt{6}})$ | C. | $({1,2\sqrt{3}})$ | D. | $({\sqrt{3},3\sqrt{3}})$ |
分析 直接利用双曲线的通径与$∠A{F_2}B<\frac{π}{3}$,得到a,b,c的关系,运用离心率公式,求出双曲线的离心率的范围.
解答 解:由题意可知,双曲线的通径为:$\frac{2{b}^{2}}{a}$,
因为过焦点F1且垂直于x轴的弦为AB,若$∠A{F_2}B<\frac{π}{3}$,
所以$\frac{\frac{{b}^{2}}{a}}{2c}$=tan∠AF2B<$\frac{\sqrt{3}}{3}$,e=$\frac{c}{a}$>1,
所以$\frac{{c}^{2}-{a}^{2}}{2ac}<\frac{\sqrt{3}}{3}$,$\frac{1}{2}e-\frac{1}{2e}<\frac{\sqrt{3}}{3}$,由解得e∈(1,$\sqrt{3}$).
故选:A.
点评 本题考查双曲线的基本性质,双曲线的离心率的求法,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{16}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{8}$ | D. | $\frac{11}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}-1}{2}$ | B. | $\frac{\sqrt{2}+1}{2}$ | C. | $\frac{\sqrt{6}-1}{2}$ | D. | $\frac{\sqrt{3}-1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com