精英家教网 > 高中数学 > 题目详情
1.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1,F2,过F1作x轴的垂线交双曲线于A,B两点,若$∠A{F_2}B<\frac{π}{3}$,则双曲线离心率的取值范围是(  )
A.$({1,\sqrt{3}})$B.$({1,\sqrt{6}})$C.$({1,2\sqrt{3}})$D.$({\sqrt{3},3\sqrt{3}})$

分析 直接利用双曲线的通径与$∠A{F_2}B<\frac{π}{3}$,得到a,b,c的关系,运用离心率公式,求出双曲线的离心率的范围.

解答 解:由题意可知,双曲线的通径为:$\frac{2{b}^{2}}{a}$,
因为过焦点F1且垂直于x轴的弦为AB,若$∠A{F_2}B<\frac{π}{3}$,
所以$\frac{\frac{{b}^{2}}{a}}{2c}$=tan∠AF2B<$\frac{\sqrt{3}}{3}$,e=$\frac{c}{a}$>1,
所以$\frac{{c}^{2}-{a}^{2}}{2ac}<\frac{\sqrt{3}}{3}$,$\frac{1}{2}e-\frac{1}{2e}<\frac{\sqrt{3}}{3}$,由解得e∈(1,$\sqrt{3}$).
故选:A.

点评 本题考查双曲线的基本性质,双曲线的离心率的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.掷一枚均匀的硬币4次,出现正面向上的次数不少于反面向上的次数的概率为(  )
A.$\frac{5}{16}$B.$\frac{1}{2}$C.$\frac{5}{8}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知tanθ=3,则cos($\frac{3π}{2}$+2θ)=(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示,在正方体ABCD-A1B1C1D1中,AB=4,M,N分别为棱A1D1,A1B1的中点,过点B的平面α∥平面AMN,则平面α截该正方体所得截面的面积为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xoy中,圆的参数方程为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ为参数),直线C1的参数方程为$\left\{\begin{array}{l}x=1+t\\ y=2+t\end{array}\right.$(t为参数).
(1)若直线C1与O圆相交于A,B,求弦长|AB|;
(2)以该直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C2的极坐标方程为$ρ=2cosθ+2\sqrt{3}sinθ$,圆O和圆C2的交点为P,Q,求弦PQ所在直线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=alnx-bx2(x>0)
(1)若函数f(x)的图象在点(1,-$\frac{1}{2}$)处的切线与x轴平行,探究函数f(x)在[$\frac{1}{e}$,e]上是否存在极小值;
(2)当a=1,b=0时,函数g(x)=f(x)-kx,k为常数,若函数g(x)有两个相异零点x1,x2,证明:x1,x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,用一边长为$\sqrt{2}$的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为$\frac{4π}{3}$的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{2}+1}{2}$C.$\frac{\sqrt{6}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的前n项和为Sn,且2n+1,Sn,a成等差数列(n∈N*).
(1)求a的值及数列{an}的通项公式;
(2)若bn=(1-an)log2(anan+1),求数列{$\frac{1}{{b}_{n}}$}的前n项和Tn

查看答案和解析>>

同步练习册答案