分析 利用n4-(n-1)4=4(n-1)3+6(n-1)2+4(n-1)+1,再叠加,结合条件,可得结论.
解答 解:∵(n+1)4=n4+4n3+6n2+4n+1,
∴(n+1)4-n4=4n3+6n2+4n+1,
∴n4-(n-1)4=4(n-1)3+6(n-1)2+4(n-1)+1,
…
34-24=4×23+6×22+4×2+1
24-14=4×13+6×12+4×1+1
上述n个等式相加,得
(n+1)4-14=4(13+23+…+n3)+6(12+22+…+n2)+4(1+2+…+n)+n,
∴4(13+23+…+n3)=(n+1)4-1-6(12+22+…+n2)-4(1+2+…+n)-n
=(n+1)4-6×$\frac{1}{6}$n(n+1)(2n+1)-4×$\frac{n(n+1)}{2}$-(n+1)
=(n+1)[(n+1)3-n(2n+1)-2n-1]
=(n+1)(n3+n2)
∴13+23+…+n3=$\frac{{{n^2}{{(n+1)}^2}}}{4}$,
故答案为$\frac{{{n^2}{{(n+1)}^2}}}{4}$.
点评 本题考查的知识点是归纳推理,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{6}}}{4}$ | D. | $\frac{{\sqrt{10}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | △PF1F2的内切圆圆心在直线$x=\frac{a}{2}$上 | B. | △PF1F2的内切圆圆心在直线x=b上 | ||
| C. | △PF1F2的内切圆圆心在直线OP上 | D. | △PF1F2的内切圆经过点(a,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com